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Abstract— We show how the introduction of a fixed goal loca-
tion allows us to lower complexity compared to reduced visibility
graphs. The number of inter-polygonal edges is decreased from
as much as square to not more than simply twice the number
of polygons. By virtue of this restriction, we demonstrate how to
deploy plan-based navigation strategies in highly unstructured,
dynamic environments. This approach has been exercised exten-
sively through numerous outdoor experiments. The vehicle used
was the DARPA LAGR robot, and the various test environments
included trees, ditches, bushes, tall and short grass, closed canopy,
and varyingly-sloped terrain.

I. INTRODUCTION

As autonomous robots are increasingly transitioning from
structured man-made environments to highly unstructured en-
vironments a number of new challenges present themselves
[7], [12], [15]. In this paper we focus on the problem of
navigating a mobile robot through terrain populated by a
number of obstacle types: low vegetation, trees, and negative
obstacles such as ditches. Information about the environment
will be obtained through stereo-based descriptions of elevation
and the main contribution is the production of low-complexity
graphs for the purpose of path-planning over the elevation
maps. In particular, we will revisit the classic visibility graph
concept and reduce the size of these graphs in such a way
that the interconnectivity is substantially smaller. As a result,
the roadmaps may no longer be optimal (except for in special
circumstances) but they will still produce solutions that are
more effective than purely reactive navigation strategies.

The problem of planning efficient routes for mobile robots
through dynamic environments is as old as the field of au-
tonomous robotics itself. Two main camps have been estab-
lished that can be roughly classified as reactive and deliber-
ative (following the notation in [1]). In a reactive navigation
system, the robot reacts to environmental changes in a purely
local manner, i.e. not taking into account memory-based
descriptions of the already-encountered environment outside
the current field-of-view. This strategy enjoys wide-spread use,
and its application is successful due to its inherent robustness
and suitability for time-critical real-time applications. (See, for
example, [2].) On the other hand, the deliberative approach can
address optimality questions directly, but the computational
price one is forced to pay may be too great. As a consequence,
deliberate approaches have found most of their successful
applications in static or slowly varying environments [10],
[14].

The task which motivates this paper is that of enabling an
autonomous ground robot to operate in an unknown outdoor
environment in the presence of non-convex obstacles. That
the robot should demonstrate improved performance upon
returning to explored locations, inevitably forces the system to
store and later recall information, e.g. through the generation
of a map.

In fact, this work was motivated by the DARPA Learning
Applied to Ground Robots (LAGR) project in which the
environment is completely unknown. Moreover, not only must
the robot be able to behave in a satisfactory manner, it must
reach a specified goal point as quickly as possible. The robot is
run through the same course multiple times, driving the need
for terrain memory to improve performance.

Given that the system should be map-based, a number
of existing planning solutions present themselves, including
the classic visibility graphs [8], [9], cell decomposition [10],
and Voronoi diagrams [11], [16]. What we require is an
incremental algorithm, capable of quickly incorporating new
and revised information about the environment as the robot
makes its exploration. The most popular algorithm of this type
is D∗, which operates on maps composed of either fixed grids
[17], or more complicated space-saving structures like framed-
quadtrees [18]. However, there is no visibility graph algorithm
that incrementally updates connectivity and path costs between
non-convex obstacles in the plane. The authors of [3] come
closest, describing an algorithm for a simple polygon with a
moving point (i.e. robot) on its interior, but the polygon may
have no holes (i.e. obstacles) and its geometry is fixed. We
present here a new algorithm adaptive to a changing set of
polygonal obstacles using a modified version of the reduced
visibility graph.

Since the graph is built up incrementally, the desire for
optimality is outweighed by the immediate need for a feasible
plan that may be only approximate. Due to the strict real-time
aspect of the outdoor navigation system under consideration,
complexity management is a key consideration. As such, we
want to produce a path planner that exhibits the following
properties:

1) The planner should always return a feasible path to the
goal when one exists, given the available information;

2) The space complexity associated with the graph structure
on which the planner operates should grow linearly in
the problem size;



3) The running time should be kept as low as possible; and
4) The graph structure should be such that it facilitates easy

human understanding.
Satisfaction of Item 2 would tend to distinguish such a

planner from grid-based D∗. Where as D∗would need to store
information about all areas the robot has travelled, we desire
a planner that only stores information where the boundary
of obstacles exists. Item 4 is important because the planner
must exist within a greater system, including potentially a
hierarchical control system and adaptive perception processes.
Inasmuch as the planner depends on or informs with these
other components, understanding how the pieces interact with
each other is essential to making the system overall work
as effectively as possible. In other words, the path planner
does not exist in a vacuum, but must ease the interpretation
of interaction amongst the other components of the robot.

The outline of this paper is as follows: In Section II the basic
ideas behind the visibility graphs are recalled and an informal
discussion about the possible improvements is presented. Fol-
lowing this, Section III describes algorithms from constructing
and maintaining our novel graph structure. A brief discussion
of complexity follows in Section IV. The paper concludes in
Section V with elaborate, real-world experiments, including a
discussion of how to transform elevation maps into polygonal
obstacles.

II. VISIBILITY GRAPHS

The well-known reduced visibility graph (RVG) has long
been used to provide shortest-path roadmaps through a known
polygonal environment [10], [13], yet, they is not typically im-
plemented in real-time applications due to complexity issues.
It takes too long to create and maintain, and consequently,
quick re-planning of the graph as the environment changes
is prohibitive. For convex polygons, each pair of polygons
shares four edges (assuming mutual visibility), and thus the
number of edges in the graph increases quadratically. Such
a high number of edges negatively effects computation time
(which is required for edge assignment), as well as human
readability.

A. Standard Visibility Connectivity

Consider Figure 1, which illustrates the drawback of ex-
tensive connectivity in a standard reduced visibility graph.
This ”spaghetti connectivity” is generated in order to provide
optimal paths between any two points in the free space of the
graph. Navigation between any two points is, however, not
the task which we are interested in addressing in this paper.
Instead, we focus on finding a good path to the known fixed
goal point (i.e. we address the single-source problem). Hence,
by orienting our approach based on this a priori information,
the graph structure can be dramatically simplified.

B. Incremental Polygon Updates

We expect that, as the robot explores its environment,
it discovers the terrain in its immediate surrounding. As it
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Fig. 1. Reduced Visibility Graph.

progresses, it continually updates its knowledge about the ob-
stacles encoded in the graph by the polygons. Consider again
Figure 1. If the geometry of polygon 3 (p3) changes, should
we spend our time updating edge and path costs between it
and polygon 9? Given our task and limited resources, we claim
the answer is no.

Alternatively, consider Figure 2. As the robot passes poly-
gon 1 and changes its geometry and vertexes’ path costs, it
propagates a change in the polygons which are ”upstream”
from it. That is, polygons 9, 10, 11, and 12 all depend on
polygon 1 for their eventual connectivity to the goal and their
path costs relative to it. This clear chain of dependency in
the graph restricts any incremental terrain updates only to
the subgraph which explicitly requires it. With this oriented
perspective, there is no need to reconsider the edges of e.g.
polygons 3 or 8 after modifying polygon 1. In a standard
visibility graph, this limited propagation is not allowed and
computation is therefore misallocated.

Note that the environment (and its polygonal representation)
is constantly being adjusted by the perceptual process of
our mobile robot. It is continually discovering new pieces
of terrain, and revising its estimates of previously explored
regions.

C. Polygon Shadows

In a planar model of the world, it is not difficult to show
that polygonal obstacles cast a cone-shaped ”shadow” behind
themselves, relative to a single point. In the simple example
of Figure 3, an optimal path starting from a point in the
shadow of polygon 1 passes by either vertex vc+

1 or vc−
1 , and

optimal paths which never enter this shadow will not intersect
the boundary of polygon 1. (Note that the shadows cast by
polygons are not necessarily as simple as a cone based on the
goal point, as illustrated by p4 and p5 in Figure 3.)
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Fig. 2. Oriented Visibility Graph.
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D. Oriented Visibility Graphs

So, by leveraging our fore-knowledge of the goal location
and our insight into polygon shadows, we can build our so-
called Oriented Visibility Graph (OVG). By considering only
the task of producing roadmaps from free-space to a goal
location (i.e. not between any two points in free-space), we
have reduced the number of edges in the graph from approx-
imately square to not more than simply twice the number of
polygons. In doing so, incremental changes in the polygonal
geometry (as the robot explores the world) are localized
to a subgraph, based directly on polygonal ”dependencies”.
Hence, we expect on average less computational burden due
to incremental perceptual updates about the environment, and
find the readability of the graph much improved.

As illustrated by Figure 3, two edges are all that is necessary
to establish the shortest path between a goal point and an
point ”behind” a polygon. In the applications described below,
we apply this principle to non-convex polygons as well,
recognizing that the resulting paths may not be optimal (as
two edges are not always sufficient for shortest-paths in non-
convex graphs), but accept this deficiency; the desire for
optimality is outweighed by the need for a fast algorithm.

And in all cases, a feasible path is always produced (when
one is available).

The set of edges interconnecting polygons, Ev , grows at a
much lower rate for our OVG compared to the older RVG. As
stated in [9], four edges connect every pair of mutually visible
convex polygons in an RVG. Hence, the cardinality of Ev for
an RVG grows quadratically with the number of polygons. For
an OVG, we fix the set of edges in Ev to exactly twice the
number of polygons.

The main effect of the reduced size of Ev is that polygon
interconnectivity is established only where necessary. When
geometric changes occur in one polygon, their affect is limited
to those polygons which explicitly depend on it. This is the
primary complexity reduction of this approach.

III. GENERAL POLYGONAL ENVIRONMENTS

In this section we present an algorithm for maintaining the
oriented visibility graph.

First, we establish some notation. The graph G is assumed
to contain a set of polygons P and a set of edges E which
interconnect elements of P . Included in P is pg, the goal poly-
gon. The total set of vertexes in G is V . Let poly(v) denote the
polygon to which vertex v belongs, and let vert(p) denote the
set of vertexes of p. The source vertex and destination vertex
of an edge e are denoted src(e) and dest(e) respectively. The
robot vertex is vr, and the goal vertex is vg .

A. General Algorithm

The algorithm we present accepts as input an unordered list
of polygon updates Pu. That is, an element of the input list
is either

1) a new polygon to be added to P ,
2) an existing polygon to be removed from P , or
3) an existing p ∈ P with modified structure (i.e. its vertex

list has changed).
Note that the algorithm in Table III-A is presented to illustrate
how an OVG can be generated, and not as an example of
optimally efficient implementation.

The operation blocks(p, e) returns true if the boundary
of p intersects e. During the last step, only those polygons
whose vertexes fall within the circle centered on the goal with
radius ‖vr − vg‖ or within a user-defined locus of the robot
are actually considered. The reason for this is that polygons
outside this set are unlikely to be encountered by the robot on
its quest to the goal, and are probably not worth our effort.

B. Edge Assignment

By far, the final step carries the most computational burden,
but before jumping into the details, we must introduce even
more notation. The function angle(v, g, p) returns the angle
between the vector g to v and the vector g to the center
of mass of p. The visibility between points s from x is
returned by visible(x, s,Pk), considering only polygons in
Pk. Polygons which block the visibility of two points is
returned by blockers(s, g) = {p ∈ P | p blocks line(s, g)}.



For the sake of brevity and clarity, the algorithm in Table III-
B is not quite complete. For example, it relies on path
costs having already been computed for any polygon polled
from Pupstream. In the case that this assumption is violated
(perhaps due to mutual path cost dependency between two

1) Find polygons ”upstream” of Pu:
· Initialize a list of polygons Pupstream to Pu.
· for each p ∈ Pupstream, for each e ∈ E , if the
dest(e) ∈ vert(p), add poly(src(e)) to Pupstream.

2) Prune edges that will be modified:
· for each e ∈ E , if poly(src(e)) ∈ Pupstream,
remove e from E .

3) Remove all updated polygons:
· for p ∈ Pu, remove p from P .

4) Recreate new/modified polygons:
· for nonempty p ∈ Pu, create vertexes vert(p), add
to V , and add p to P .

5) Remove blocked edges of unmodified polygons:
· for p ∈ Pu, for each e ∈ E , remove e if blocks(p, e).

6) Sort the modified polygons and reset each the path cost
of each vertex in these polygons:
· sort Pupstream by dg(p), ∀p ∈ Pupstream.

7) Add edges and calculate path costs for all upstream
polygons.

TABLE I
ORIENTED VISIBILITY GRAPH ALGORITHM.

forall p ∈ Pupstream

set g = vg

find the shadow casting vertexes:
vc+

p = arg maxv∈p(angle(v, g, p))
vc−

p = arg minv∈p(angle(v, g, p))
forall s ∈ {vc+

p , vc−
p }

Pb = blockers(s, g)
do

forall q ∈ Pb

w = {x ∈ q | visible(x, s,Pb)}
vq = arg minx∈w(C(s) + W(x, s))
append vq to Vq

end
g = arg minv∈Vq

(C(v))
recompute the shadow caster s
recompute Pb = Pb ∪ blockers(s, g)

until s and Pb stabilize
add the edge between s and g

end
assign path costs for v ∈ Vp

end

TABLE II
OVG EDGE ADDITION ALGORITHM.

non-convex polygons), polygons polled from Pupstream can
be re-appended to the list and re-processed.

IV. COMPLEXITY

The worst-case running time for this algorithm is O(|V|3).
The average complexity (based on experiments described
below), however, is much lower. Moreover, this algorithm
does make use of any known advanced methods for sorting
and searching vertexes and detecting collisions (e.g. the kd-
tree, the radial sweep principle [4], or the funnels of [5]).
Both algorithms are presented as they are to be clear though
inefficient approaches to producing Oriented Visibility Graphs.
The benefit that the OVG offers is that incremental changes in
the graph polygons propagate edge and path cost modifications
to a confined subgraph. Hence, while average running time as
a function of input size for our approach may not be better
than of some RVG implementations, the average input size to
the OVG is much much lower.

The edges of the OVG are a subset of the RVG edges.
As discussed above, space requirements for an OVG’s edges
grow only linearly in the number of polygons. While algo-
rithmic complexity reduction is not the focus of this paper,
the OVG can be considered low-complexity by virtue of the
small number of polygonal interdependencies. Our use of this
graph approach on DARPA’s LAGR project bears out that the
complexity of the graph is well managed.

V. APPLICATION - PROOF OF THE PUDDING

In this section, we describe in brief how we have applied
our Oriented Visibility Graph to the navigation of a ground
robot that is given a fixed goal point in GPS coordinates,
and through a GPS receiver knows approximately its own
location. It is expected to traverse the outdoor environment
and reach the goal in as little time as possible. Information
about its surroundings is gathered through only four small
cameras (two stereo pairs) and a bump sensor. These cameras
produce stereo maps of 4-6 meters in maximum depth, which
are used in turn to accumulate an elevation map of the terrain.
Also, a traversability map is produced from the raw images
and combined with elevation to determine where the robot
may travel to reach the goal.

Navigation commands are provided to the robot through
a planner based on an OVG. This planner listens to the
elevation and traversability map datastreams, and updates its
graph accordingly.

The two stereo pairs generate stereo disparity maps at 4Hz
each. This information runs through the process described in
Section V-A and polygon updates are handed to the planner.
The planner directly produces motor commands for the robot,
and runs between 4 and 20 Hz. (The robot must receive motor
commands at above 2Hz or otherwise behaves undesirably.)
Our planner’s average cycle time is above 5Hz.

The robot has been tested in outdoor courses with total
distances over 100 meters, in open terrain, on paths through
woods, and under tree canopy without trails. It is given three
runs to attempt the same course, starting from about the same



location. At the end of the first and second run, the robot saves
its graph so that it may be re-loaded at the initiation of the
second and third runs. It is the planner’s job to find its way out
of cul-de-sacs as it discovers them, and avoid them all together
if it returns to them. The outdoor environment contains both
natural and man-made cul-de-sacs and non-convex polygons
to challenge the robot.

A. Generating Polygons from Sensor Data

We consider only data streams that correspond to Cartesian
image maps, inasmuch as our visibility graph is presented here
as strictly 2-D. With each stream, the graph is informed about
the likely presence of some object type at a specific location,
and the variance estimate of that likelihood. These multiple
likelihood and variance maps are subsequently combined via
a function c(...) into a single likelihood-of-obstacle image L.
An example of c, appropriate for the block diagram in Figure
4, is

c(s, vs, t, vt) =

{

s, if vs < θvs
, t < θt, vt < θvt

0, otherwise,

where s refers to a sort of first derivative of elevation, t is the
computed traversability computed for a pixel location, and vs

and vt refer to the variance of measurements of s and t. The
various θi refer to user-defined threshold parameters for t, vt,
and vt. We compute s at a pixel location by the well-known
sobel operator [6].

Now, L must be transformed via a binary decision-making
function d(L(i, j)), identifying which pixels the robot can
traverse. The simplest non-trivial decision function is naturally

d(L(i, j)) =

{

obstacle, if L(i, j) > θl

not obstacle, otherwise

where θl is some threshold on L.
Hence, let T be the mapping from the real-valued map L

to the binary obstacle map M ,

T : <nxm → B
nxm. (1)

By applying d at each location of L, we transform L into M .
Obstacle points in M are segregated and labelled based on

any typical segmentation technique.
Of course, all the operations in Figure 4 are incremental.

So, updates are passed in the form of individual pixel modifi-
cations, and operations like segmentation are performed on a
pixel-by-pixel basis.

B. Polygonization

The labelled obstacle map of Figure 4 is polygonized for
input to the OVG-based planner. Polygonization is performed
according to the following steps:

1) A mathematical-morphology dilation operation with a
circular structuring element is applied to the labelled
obstacle points for each obstacle (e.g. Figure 5). This
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Fig. 4. Traversability Streams to Polygons.

dilation accommodates the physical geometry of the
robot, allowing it to maintain an appropriate distance
between it and obstacles.

2) By starting at any point on the boundary of the dilation
from Step 1, the closed-contour set of pixels can be
generated by iteratively stepping from one pixel to the
next.

3) The boundary walk of Step 2 produces more pixels
than necessary to accurately represent the obstacle; a
reduction of these vertexes can be performed. Let δi

be distance from a vertex vi to the line formed by its
two neighbors along the boundary. By removing those
vertexes with δ less than some threshold, a representa-
tion of the obstacle is found which has fewer vertexes.
Of course, fewer vertexes per polygon implies decreased
running time, but tends to misrepresent the obstacles that
the robot is to avoid.

C. Samples from Application

Images such as in Figure 6 are used to form stereo disparity
maps and the elevation stream for Figure 4. Figure 7 illustrates
the graph structure overlaid on the elevation map of a test
run. Polygons are shown in white, and edges are black.
Here, each pixel represents a 0.1m × 0.1m square. Graphs
typically contain as many as 100 polygons of various sizes,
are composed of thousands of vertexes, and cover more than
100 meters from start to finish. Even with the naive Algorithms
presented above, the planner still operates fast enough for our
real-time system.

VI. CONCLUSIONS

In this paper, we derive a significantly reduced roadmap
for unstructured polygonal environments compared to the
reduced visibility graph. This construction stems from the
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fact that we insist on a given, fixed goal point. Real-world
experiments illustrate the usefulness of the proposed method
in time-critical outdoor applications where the perception is
based solely on stereo-based elevation maps. These maps are
polygonized in order to support the use of the planner. By
saving the graph between runs, dynamic update rules (for

adding, removing, or changing polygons) enable the robot to
improve its performance over runs.
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