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ABSTRACT

This paper presents an approach to controlling agent positions in single-leader networks to target points while explicitly
taking agent homogeneity into account. When the capabilities of agents to accomplish tasks at each of the targets are identical,
then the label of the target points may be permuted while still expressing the same intention. In single-leader networks which are
not completely controllable, such a permutation of the target points may at times move a target closer to the system’s reachable
subspace, thereby allowing the network to surpass the limitations on controllability when homogeneity is not considered
explicitly. To fully exploit this property in homogeneous networks, it is then necessary to find the permutation of a target point
which brings it closest to the reachable subspace. However, finding this optimal permutation is shown to be in general a
non-deterministic polynomial-time (NP)-hard problem. Specific network topologies are identified for when finding such an
optimal permutation of a target point can be advantageous when controlling single-leader networks. Moreover, an alternate view
of the problem of finding optimal permutations is presented in which clustering-based algorithms can be applied to find
suboptimal solutions.
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I. INTRODUCTION

Research in multi-agent systems has focused mainly on
designing decentralized controllers that allow for agents to
autonomously achieve global goals, such as reaching consen-
sus, e.g., [4, 6, 13, 16, 19] or achieving formations, e.g., [3, 7,
17]. However, in many of the intended applications for multi-
agent systems, such as search-and-rescue, it is more likely
that agents will be working closely with humans as opposed
to acting completely autonomously. The research problem
that arises involves understanding how a human can control
and direct a network of agents to perform a set of spatially-
distributed tasks, without directly communicating with each
individual agent.

In this paper, we will focus on the problem of control-
ling a network of agents to reach a set of desired target points.
To do so without controlling each agent directly, a single-
leader control paradigm will be used. Here, a human is
assumed to take direct control of a single “leader” agent
within the network, while all other agents play the roles of
“followers” by executing a nearest neighbor averaging rule to
maintain cohesion. The idea is that by directly controlling the
state of the leader agent, the follower agents’ states can be

affected so as to reach a set of desired target points as is the
case in [8, 11, 15, 18]. A known drawback to using the
single-leader approach to control, however, is that the major-
ity of network topologies actually yield single-leader net-
works which are not completely controllable. Therefore, a
desired target point generally cannot be reached directly by
follower agents in the network.

To help improve upon the performance limitations of
single-leader networks, this paper will present a new method
for controlling them that directly exploits homogeneity in
the agents’ capabilities. Traditionally, the controllability of
single-leader networks is viewed as a point-to-point property
in the state space, where it is desired to control each agent to
its corresponding target. However, if there are identical tasks
to be completed at each target point and the ability of each
agent to carry out that task is the same, then the labels of the
target points can be arbitrarily permuted while still expressing
the same intention. In other words, when controlling a system
of homogeneous agents to targets, it does not matter which
agent goes where, as long as there is an agent assigned to each
of the target locations. Using this new approach for control-
ling homogeneous single-leader networks, controllability is
no longer a point-to-point property of the system, but instead
becomes a point-to-set property, where the set consists of all
permutations of the target point.

For single-leader networks that are not completely con-
trollable, exploiting agent homogeneity and permuting the
labels of the targets may, at times, move a target point closer
to the system’s reachable subspace than before. Therefore,
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directly incorporating agent homogeneity when controlling
single-leader networks can allow for the network to possibly
exceed previously established limitations on its reachability.
The caveat to exploiting homogeneity when controlling such
networks, however, is that finding the optimal permutation of
a target point that brings it closest to the system’s reachable
subspace is, in general, a non-deteministic polynonial-time
(NP)-hard problem. Specific network topologies will be iden-
tified as to when optimally permuting a target point guaran-
tees a performance increase, compared to when homogeneity
is not explicitly taken into account. Moreover, it will be
shown that finding the optimal target point permutation is
equivalent up to a polynomial-time transformation to a Eucli-
dean minimum sum-of-squares clustering problem on the
target points with equality constraints on the cluster sizes.
Using this alternate view of the problem, it is demonstrated
that clustering-based techniques can be used to arrive at sub-
optimal solutions.

The idea of agents in a network being controlled so as
to disregard individual identities has been explored in some
related literature. In particular, [10] modeled agents in an
index-free manner by using indicator distribution represen-
tations that resulted in integro-differential dynamics. This
Eulerian approach was shown to parallel the traditional
graph-theoretic approaches of modeling multi-agent dynam-
ics. With the model, stability properties could be proven for
systems of agents and very simple controllers were produced
for certain multi-agent problems. Moreover, [21] investi-
gated the distributed formation control problem for agents
where the assignment of agents to target points in the for-
mation are not given a priori, but instead had to be deter-
mined dynamically. To do so, a local market-based protocol
was used to determine the permutation of agents in the
desired formation, and artificial potential fields were used to
control the agents to that formation. This paper builds on
previous results by the authors in [20] on controlling a
network of homogeneous agents to a set of target points,
where the labels of the targets may be permuted freely. The
problem tackled in this paper differs from that of related
work because the focus is for a human to take control of a
single agent and direct a network of homogeneous agents to
a set of desired target points, as opposed to having the agents
act completely autonomously. Therefore, obstacles such as
the lack of complete controllability arise, which greatly
complicates the control task, and requires a new way to
analyze the controllability of such systems if homogeneity is
to be taken into account explicitly.

It should be noted that the methods presented in this
paper are only meant to bring a target point closer to a homo-
geneous single-leader network’s reachable subspace, but not
necessarily always into the subspace. Therefore, the results
discussed are most appropriate for mission-critical scenarios
in which one would like to drive the network of agents as

close as possible to a set of target points, even if they cannot
be reached directly. For example, strategically positioning
mobile sensors to cover an area in a search-and-rescue
mission.

Although this paper focuses primarily on single-leader
networks where all of the agents have homogeneous capabili-
ties, the underlying concept can be expanded to heterogene-
ous single-leader networks as well. Any time some agents
within a network have the same capabilities and there is a lack
of complete controllability, the labels on their respective
target points can be swapped in hopes of moving the target
point closer to the system’s reachable subspace. If multiple
species of agents exist in the network, then a target point’s
label may be swapped with another target point’s label if and
only if their corresponding agents belong to the same species.

The outline of this paper is as follows: Section II will
present the system dynamics for single-leader networks.
Section III will review previous work on the controllability
properties of single-leader networks, and present a new
approach to analyzing controllability when homogeneity is
present in the network. The problem of finding the optimal
permutation of a target point to bring it closest to a system’s
reachable subspace will be discussed, and the computational
complexity of solving the problem will be presented. Section
IV will then give insight into the network topologies where
exploiting agent homogeneity will allow for networks to be
controlled beyond the traditionally-established limitations on
reachability. Finally, Section V will demonstrate how taking
an alternate approach to finding optimal target point permu-
tations allows for clustering techniques to be used to find
suboptimal solutions.

II. SYSTEM DYNAMICS

Consider a team of N + 1 agents, numbered 1, . . . ,
N + 1, with positions (states) xi ∈ Rn, for i = 1, . . . , N + 1
respectively. In this paper, it is assumed that each agent is
only able to sense the relative displacement between itself and
select other agents in the network as dictated by a network
topology. In particular, agent sensing is bidirectional and so
the information flow amongst agents in the network can be
represented by a static undirected graph G = (V, E), where
V = {v1, . . . , vN+1} and (vi, vj) ∈ E if and only if information
flows between agents i and j. Moreover, let the neighbor set
Ni = {j|(vi, vj) ∈ E} represent the index set of all agents that
share an edge with agent i in G.

In order to control the agent states without communi-
cating with each agent directly, a single-leader control para-
digm will be used where the state of a single leader agent will
be controlled directly. The remaining agents will take on the
role of follower agents and execute a nearest-neighbor aver-
aging rule so as to maintain cohesion in the network. Without
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loss of generality, assume the N+1th agent is the leader while
agents 1, . . . , N are the followers. The agents’ dynamics are
then given by:
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where u ∈ Rn is the control input.
The dynamics for the system of follower agent states

can be written collectively as a linear time-invariant (LTI)
system by using the graph Laplacian matrix. To do so, first let
the adjacency matrix of G be the (N + 1) ¥ (N + 1) symmetric
matrix A where Ai,j, the element in the ith row and jth column,
is given by
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The degree matrix of the graph G is a (N + 1) ¥ (N + 1)
diagonal matrix D, where
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Finally, the graph Laplacian matrix L is given by

L A= −Δ . (4)

Next, it is necessary to extract information on how the
states of the follower agents evolve as a function of the
control input. Let x x xT

N
T T Nn= [ ] ∈1 , ,… R be the concatenated

positions of all follower agents, where xj = [xj,1, . . . ,
xj,n]T ∈ Rn, for j = 1, . . . , N. Moreover, define di: RNn → RN,
for i = 1, . . . , n, as a function that returns the positions of the
N follower agents along the ith dimension, i.e., di(x) = [x1,i,
. . . , xN,i]T. The graph Laplacian matrix can be decomposed
into the following blocks that isolate information on the inter-
follower agent interactions, and the interaction between the
leader and follower agents:

L
Lf

T=
⎡

⎣
⎢

⎤

⎦
⎥

�
� ξ , (5)

where the dimension of Lf is N ¥ N, � is N ¥ 1, and x ∈ R.
Using this decomposition of the graph Laplacian

matrix, the dynamics of the follower agents’ positions along
the ith dimension are given by the following LTI system:

d x L d x ui f i i� �( ) = − ( ) − , (6)

where ui is the ith element of u. Since the dynamics along
each dimension are decoupled, the dynamics of x can be
written using the Kronecker product, as the LTI system

� �x L I x I uf n n= − ⊗( ) − ⊗( ) , (7)

where In is the n ¥ n identity matrix, e.g., [12]. Having
established a dynamical model of the single-leader network,
we will use it to determine how closely one can control a
network of follower agents to a set of desired target points.
However, in order to take agent homogeneity into account
explicitly, a new way of analyzing the controllability
properties of the system is required.

III. CONTROLLABILITY IN
HOMOGENEOUS SINGLE-LEADER

NETWORKS

The need to take agent homogeneity into account when
controlling single-leader networks stems from the fact that
the majority of network topologies yield systems which are
not completely controllable. Therefore, by exploiting homo-
geneity and permuting the target point labels, one hopes to
find a permutation of the target point that brings it closer to
the system’s reachable subspace. In this section, we will start
by reviewing existing results on the controllability of single-
leader networks to determine when such systems are not
completely controllable. Once those networks have been
highlighted, we will then present how one can potentially
alleviate the lack of controllability in these networks by
incorporating agent homogeneity.

3.1 Controllability of single-leader networks

In a single-leader network, the dynamics of the follower
agents along each dimension are decoupled and given by the
LTI system (6). Treating each dimension separately, the
reachable subspace is given by the range space of the reach-
ability matrix G, where

Γ = − −( ) −( )⎡⎣ ⎤⎦
−� � … �L Lf f

N 1
. (8)

To better characterize the reachable subspace of such
networks, the analysis tool of maximum leader-invariant
externally equitable partitions will be used. In particular, it
was shown in [11] that these partitions offer a useful network
topological interpretation for the lack of complete
controllability of single-leader networks. Before stating this
result, however, we must first review some definitions from
[5, 11, 12].

Definition III.1. Given a vertex set V, let P = {C1, . . . , CM}
be a partition of V, where Ci ⊆ V for i = 1, . . . , M, C1

� . . . � CM = V, and Ci � Cj = Ø when i � j. We will call
each Ci a cell.

Definition III.2. Given a vertex v and a cell C, the
node-to-cell degree gives the number of vertices in cell C
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that share an edge with v, and is given by deg(v,
C) = card({v′ ∈ C|(v, v′) ∈ E}).

For example, in Fig. 1b, C1, C2, C3 are cells that parti-
tion the vertices in the network and deg(v2, C3) = 3.

Definition III.3. An external equitable partition (EEP)
is a partition P such that "C ∈ P, v ∈ C and v′ ∈ C ⇒
deg(v, C′) = deg(v′, C′)"C′ ∈ P - {C}.

Definition III.4. An EEP is leader-invariant if the vertex
corresponding to the leader agent belongs to its own cell.

Definition III.5. A leader-invariant EEP is maximal if it has
the fewest number of cells in any leader-invariant EEP.

For example, Fig. 1a is a leader-invariant EEP, while
Fig. 1b is a maximal leader-invariant EEP. With these defini-
tions in place, we can now state an important established
result relating the controllability of a single-leader network to
its maximal leader-invariant EEP which the analysis in the
rest of this paper builds off of. It was shown in [11] that cells
of the maximal leader-invariant EEP give information as to

which groups of follower agents cannot be controlled inde-
pendently of one another. That result is stated again below for
easy reference.

Theorem III.1 [11]. Assume a single-leader network has a
network topology with a maximal leader-invariant EEP of k*
cells, numbered 1, . . . , k*, that do not contain the leader
agent. The range space of the reachability matrix for (6), the
follower agent dynamics along any dimension, is given by:

R span w wkΓ( ) = { }1, ,… (9)

where 1 � k � k* and wi ∈ RN. Moreover, letting wi,j

represent the jth element of wi, it must be that

1. wi,j ∈ {0, 1},
2. wi,a = 1 ⇒ wi,b = 1 for all vb that belongs in the same cell

as va,

3. wi

i

k

=
∑ =

1

, where is the vector of all 1’s.

The theorem states that follower agents which are
located within the same cell of the maximal leader-invariant
EEP will asymptotically approach each other as they move
according to the dynamics (7). Therefore, instead of being
able to control each agent’s position independently, only the
centroid of agents within each cell can be controlled.
However, sometimes even the centroids of certain cells
cannot be controlled independently of one another either,
resulting in all the agents of those cells asymptotically
approaching each other. This is why 1 � k � k*. In order to
determine how close agents in a single-leader network can get
to a specific desired target point, it is necessary to restrict our
attention to systems where the reachable subspace is known
perfectly. Therefore, we make the following key assumption.

Assumption III.1. For general single-leader networks,
maximal leader-invariant EEPs only give necessary condi-
tions for controllability. However, in this paper, we restrict our
attention to single-leader networks in which the reachable
subspace R(G) is completely determined by the agents’ mem-
bership within the cells of the maximal leader-invariant EEP.
In other words, we assume that k = k* in Theorem III.1, i.e.,
the reachable subspace R(G) = span{w1, . . . , wk} is such that

w
if v cell i

otherwise
i j

j
,

1

0
=

∈⎧
⎨
⎩

, ,

, . (10)

In single-leader networks where the assumption does not
hold, the results derived in this paper can be viewed as an
upper bound on the limits of the system’s controllability
properties.

(a)

(b)

Fig. 1. Two examples of leader-invariant EEPs of a single-leader
network, where V1 is the vertex for the leader agent. (a)
shows the trivial leader-invariant EEP, while (b) gives the
maximal leader-invariant EEP. Since the two partitions
are different, the network is not completely controllable.
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Although this may seem like a major assumption, it is
not overly restrictive since, in many network topologies,
having a trivial maximal leader-invariant EEP can act as both
a necessary and sufficient condition for controllability. An
example of a class of such networks where the assumption
holds true is when the network topology also yields a distance
regular graph as discussed in [22]. Under the assumption, a
single-leader network is therefore characterized as being
completely controllable and can reach any target point only
when the maximal leader-invariant EEP is trivial, i.e., each
follower agent is contained within its own cell. Referring
back to Fig. 1 in the example, we see, therefore, that the
maximal leader-invariant EEP associated with the single-
leader network is not trivial and hence the system is not
completely controllable.

3.2 Optimally reachable target points

The set of reachable target points in a network is
restricted by the choice of leader agent and network topology.
In most scenarios, the resulting single-leader network is not
completely controllable. However, a margin of error may be
allowed between where the agents are located and where the
user desires them to be. Thus, even if the targets cannot be
reached exactly by the network, one would like to minimize
this margin of error by finding a reachable target point that is
as close as possible to the original target. To find this opti-
mally reachable target point, it is necessary to first perform a
reachability analysis of the system. Here, agents will be
modeled as initially being at close proximity to one another
by assuming zero initial conditions on the positions of the
follower agents in the network.

Assumption III.2. All agent positions are initially zero, i.e.,
agents which belong in the same maximal leader-invariant
EEP cell start and stay together throughout the control task.

Although such an assumption is needed for the reach-
ability analysis, it is not far from reality when controlling
such single-leader networks since it is known that the states of
agents belonging in the same cell will asymptotically con-
verge over time due to the lack of controllability. Therefore,
any multi-agent control task of considerable duration will
have conditions that closely resemble those specified in the
assumption.

With zero initial conditions on x, a target point of fol-
lower agents xT ∈ RNn is reachable if and only if di(xT) ∈ R(G),
for i = 1, . . . , n. Depending on the network topology, the
system of follower agents is not always completely control-
lable and so may not be able to reach a target point perfectly.
Therefore, for a given xT, the closest point along the reachable
subspace that agents can reach will be referred to as x*(xT),
the optimally reachable target point which minimizes

J x x x x d x d xT T i T i

i

n

, ,2 2

1

( ) = − = ( ) − ( )
=
∑ (11)

such that di(x) ∈ R(G), for i = 1, . . . , n.

Proposition III.1. For a given xT, the optimally reachable
x*(xT) that minimizes (11), where di(x*(xT)) ∈ R(G) for i = 1,
. . . , n, is given by

x x WW I xT
T

n T*( ) = ⊗( ) , (12)

where

W
w

w

w

w
k

k

= ⎡
⎣⎢

⎤
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1

1

… , (13)

and w1, . . . , wk are as given in (9).

Proof. Since x x d x d xT i T i

i

n

− = ( ) − ( )
=
∑2 2

1

, minimizing

||xT - x||2 is equivalent to minimizing ||di(xT) - di(x)||2

individually for each i because the follower agent states along
each dimension are controlled independently of one another.
The Hilbert Projection Theorem says that the optimally
reachable di(x*(xT)) ∈ R(G) that minimizes ||di(xT) - di(x)|| is
the projection of di(xT) onto the subspace R(G). The reachable
subspace R(G) is spanned by vectors w1, . . . , wk as given in
(9). Therefore, the optimal choice of di(x) is given by

d x x
w d x

w
wi T

j
T

i T

j

j

j

k

*( )( ) = ( )
=
∑ 2

1

. (14)

For W as defined in (13), (14) can be rewritten as

d x x WW d xi T
T

i T*( )( ) = ( ).

Since this holds for all i, x*(xT) is written as (12). �

The previous proposition presented a closed-form solu-
tion for the closest that agents in a single-leader network can
reach to a desired target point. However, (14) in the proof can
be used to come up with an alternate representation of the
optimally reachable target point which offers an intuitive way
to interpret the result visually, and opens the door to various
clustering-based approaches when we start to incorporate
agent homogeneity. To arrive at this alternate formulation of
the result in Proposition III.1, first define gi: RNn → Rn, for
i = 1, . . . , N, as a function that returns the n dimensional
coordinates of the ith agent, i.e., gi(x) = xi. Furthermore, let m:
{1, . . . , N} → {1, . . . , k} be a function that takes in the index
of a follower agent and returns the index of the cell it belongs
to in the maximal leader-invariant EEP. Let m-1 be the inverse
image function that takes in a cell number and returns a set
containing the indices of the follower agents that belong to
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that cell. With these definitions in place, we will now present
an alternate representation of the result in Proposition III.1
for the optimally reachable target point.

Corollary III.1. For a given xT and corresponding x*(xT) that
minimizes (11),

g x x
m m i

g xi T j T

j m m i

*( )( ) = ( )( ) ( )−
∈ ( )( )−
∑1

1
1

. (15)

In other words, for each cell j = 1, . . . , k in the maximal
leader-invariant EEP, agents in cell j of x*(xT) are located at
the centroid of the set of all target points associated with those
agents.

Proof. From the definition of vectors wj in (10), the expres-
sion for di(x*(xT)) in (14) can be interpreted. The numerator of
each summand w d xj

T
i T( ) is the sum along the ith dimension of

all target positions in cell j. That quantity is divided by ||wj||2,
which is the number of agents in cell j, so the result is the
centroid along the ith dimension of all target positions in cell
j of xT. Finally, that value is multiplied to wj, thereby assigning
it to the ith dimensional component of all agents positions in
cell j of x*(xT). Since this holds for all dimensions along i = 1,
. . . , n, agents in cell j of x*(xT) are all located at the centroid
of the target positions in cell j of xT. �

With an understanding of x*(xT) established, it is
also possible now to compute the cost associated with the
difference between any given xT and its associated optimally
reachable target point x*(xT).

Corollary III.2. For a given xT and corresponding x*(xT), the
minimum cost J*(xT) = J(xT, x*(xT)) is given by

J x x I WW I xT T
T

Nn
T

n T*( ) = − ⊗( ) . (16)

Proof. Substitution of (12) into the cost (11). �

Having now computed the closest in which agents in a
single-leader network can be controlled to a desired target
point, we will now extend this analysis to determine what
happens when agent homogeneity is taken into account
explicitly and how the minimum cost associated with a target
point is affected as a result.

3.3 Homogeneous networks

Equation (16) represents the cost associated with the
closest that a particular single-leader network can reach to a
target point xT. Notice, however, that xT represents the specific
assignment of having each agent i be controlled to gi(xT), for
i = 1, . . . , N. Nevertheless, in a network of agents with
homogeneous capabilities, the roles of agents at each of the

target points are interchangeable and so it makes no differ-
ence if instead we ask agent i to go to gj(xT) and agent j to go
to gi(xT). In fact, any permutation of the target point indices in
xT to some (P ƒ In)xT, where P is a permutation matrix, ends
up specifying the same intended target configuration if all we
care about is the presence of an agent at each of the target
positions. At times, however, this new permuted target point
may be “more reachable” in the sense that it is closer to the
system’s reachable subspace, i.e., J*((P ƒ In)xT) < J*(xT).

Example III.1. Consider a single-leader network with
scalar, i.e., 1D, agent positions and N = 3 follower agents as
illustrated in Fig. 2a, where agents 1 and 2 are in cell 1 and
agent 3 is in cell 2 of the maximal leader-invariant EEP
associated with the network. The range space of the reach-
ability matrix is thus

R span w w spanΓ( ) = { } =
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
1 2,

1

1

0

,

0

0

1

..

Let xT = [1 9 10]T and

P =
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

0 1 0

0 0 1

1 0 0

,

then J*(xT) = 32, while J*(PxT) = 0.5. This difference in
performance when agent homogeneity is taken into account
can be clearly seen in Fig. 2b and c, where the Xs represent

(a)

(b)

(c)

Fig. 2. The network topology of the single-leader network in
Example III.1 is shown in (a), where V0 is the vertex for
the leader agent. (b) shows the closest the agents in the
network can reach xT = [1 9 10]T, while (c) shows the
closest the agents can reach PxT = [9 10 1]T. Notice that
the PxT results in a cost that is less than xT.
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target points and Os represent follower agent positions which
are optimally reachable as described by Corollary III.2.
Therefore, this example has shown that the permuted point
PxT is indeed more reachable than the original target point xT.

As seen in the previous example, different permutations
of a target point may be at different distances from the sys-
tem’s reachable subspace. In order to fully exploit agent
homogeneity when controlling a single-leader network, it is
then necessary to find the optimal permutation of the target
point which brings it closest to the system’s reachable sub-
space. Upon finding this permutation, controlling the network
to reach that target point is trivial since (7) is a LTI system.
Therefore, standard optimal control techniques for LTI
systems with a fixed final state can be used to generate an
appropriate control signal for the leader agent. However, the
difficulty lies in actually finding an optimal permutation of
the target point. In particular, fully exploiting agent homoge-
neity when controlling single-leader networks requires that
one solve the following problem.

Problem III.1. Let P be the set of all N ¥ N permutation
matrices. Given a single-leader network and target point of
follower agents xT, find P* such that

P J P I x
P

n T* arg min= ⊗( )( )
∈P

* .
(17)

Computing P* can be viewed as finding the optimal
specification of a target configuration for the follower agents
to be controlled to. The next step is to determine the compu-
tational complexity of finding the closest reachable target
point that homogeneous agents in a single-leader network can
be controlled to, i.e., solving for P*. To approach this, an
alternate representation Problem III.1 will first be formulated
that uses Corollary III.2 to turn it into a variant of a standard
clustering problem on the target points g1(xT), . . . , gN(xT).
From there, the computational complexity can then be deter-
mined and appropriate clustering algorithms can be used to
solve the problem. Before proceeding, however, it is first
necessary to introduce some clustering-related definitions.

Definition III.6. A multiset is a collection of objects in
which order is ignored, but where multiplicity is significant.

For example, M1 = {1, 3, 4}, M2 = {1, 3, 4, 4}, and
M3 = {1, 4, 3, 4} are all multisets. M2 = M3, but M1 � M2 and
M1 � M3. Also, |M1| = 3, while |M2| = |M3| = 4.

Definition III.7. Given a multiset S, a clustering of S is a
partitioning of the elements of S into multisets c1, . . . , ck.

Now, let S be a multiset of agent positions. Within each
cluster ci, define the distortion measure of that cluster as

D c z ci i

z ci

( ) = − ( )
∈
∑ θ 2,

(18)

where q(ci) is the centroid of all positions in ci. Define the cost
of a clustering as the total distortion measure, given by

H c c D ck i

i

k

1

1

, , .…( ) = ( )
=
∑ (19)

These definitions together form the basis of the standard
Euclidean minimum sum-of-squares clustering problem that
is widely seen in machine learning and pattern recognition
applications.

Problem III.2. The Euclidean minimum sum-of-squares
clustering problem is to find a clustering c1*, . . . , ck*, given
a multiset of positions S, so as to minimize (19).

The following theorem will now show that finding an
optimal permutation for a target point is equivalent to a
variant of the standard Euclidean minimum sum-of-squares
clustering problem on the set of target points {g1(xT), . . . ,
gN(xT)}.

Theorem III.2. Suppose a single-leader network has a
maximal leader-invariant EEP of exactly k cells containing
follower agents, numbered 1, . . . , k. Finding the optimal
permutation P* for a target xT in Problem III.1 is equivalent
up to a polynomial-time transformation to solving Problem
III.2 under Assumption III.1 for the multiset of target posi-
tions, S = {g1(xT), . . . , gN(xT)}, with the constraint that
|ci| = |m-1(i)|, the number of agents in cell i, for i = 1, . . . , k.

Proof. Given a permutation matrix P, let p: {1, . . . ,
N} → {1, . . . , N} take in an agent index and returns
the permuted index such that, for j = 1, . . . , N,
gj(xT) = gp(j)((P ƒ In)xT). Let ci = {gj((P ƒ In)xT)|m(j) = i|},
for i = 1, . . . , k, be a clustering of S = {g1(xT), . . . , gN(xT)},
where target positions in (P ƒ In)xT with indices in cell i are
assigned to ci.

Notice that |ci| = |m-1(i)|, the number of agents in each
cell i, for i = 1, . . . , k. Considering different permutations of
agent indices for the target point xT is equivalent to consider-
ing different cell assignments of the target positions, which is
equivalent to considering clusterings c1, . . . , ck of S. The cost
(16) associated with a chosen permutation P of target posi-
tions can be rewritten using (11) and Corollary III.1 as
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which shows that the cost is equivalent to (19), i.e., both
problems are minimizing the same cost.

To show that the two problems are equivalent up to a
polynomial-time transformation, algorithms will now be pre-
sented so as to transform the solution of one problem into the
solution of the other in polynomial-time. First, given the P*

that solves Problem III.1, an optimal clustering c1*, . . . , ck*
that solves Problem III.2 under the constraint that
|ci| = |m-1(i)|, for i = 1, . . . , k, can be computed by the
polynomial-time algorithm:

Let be empty multisets

Add * t

c c

i N

g P I x

k

i n T

1

1

*, , * ;

, ,for do=

⊗( )( ) oo cm i( )* ;

end

On the other hand, when given an optimal clustering
c1* , . . . , ck*, the matrix P* can be computed using the
polynomial-time algorithm:

Let and

matrix

Q R N P N N

i k

each z ci

= = { } = ×(
)

=

∈

1 0

1

, , , *

;

, ,

*

for do

for ddo
Find any such that

Remove from

Find a su

j Q g x z

j Q

b m i

j T∈ ( ) =

∈ ( )−

;

;
1 cch that

Remove from

Set the element to

b R

b R

Pb j

∈ ;

;

* ;, 1

end
end

Thus, finding P* in Problem III.1 under Assumption
III.1 is equivalent up to a polynomial-time transformation to
finding an optimhal clustering c1*, . . . , ck* for S = {g1(xT),
. . . , gN(xT)}, that minimizes (19) subject to |ci| equaling the
number of agents in cell i, for i = 1, . . . , k.

Viewing the problem of finding an optimally permuted
target point as a size-constrained variant of the Euclidean
minimum sum-of-squares clustering problem is useful
because it allows us to find the computational complexity
associated with solving the problem.

Theorem III.3. The problem of finding the optimal permu-
tation matrix P* in Problem III.1 under Assumption III.1 is
NP-hard.

Proof. It was shown in [1] that the standard Euclidean
minimum sum-of-squares clustering problem described in
Problem III.2 is NP-hard by using a reduction from the
DENSEST CUT problem for the case of k = 2 clusters. Using
almost the same procedure, we will show that the optimiza-
tion version of the MAX BISECTION problem, which was
shown in [14] to be NP-hard, reduces to the size-constrained
Euclidean minimum sum-of-squares problem in Theorem
III.2 for k = 2 clusters. From there, leveraging the result from
Theorem III.2 that the size-constrained Euclidean minimum
sum-of-squares problem is equivalent, up to a polynomial-
time transformation, to Problem III.1 under Assumption III.1
will prove the theorem.

Let G = (V, E) be an undirected graph. Define B1, B2 as

a partition of V such that B B
N

1 2
2

= = , where N is assumed

to be even. The MAX BISECTION problem is to find B1* and
B2* so as to maximize |E(B1, B2)|, where E(B1, B2) =
{(vi, vj) ∈ E|vi ∈ B1 and vj ∈ B2}.

Arbitrarily number and orient the edges in E as e1, . . . ,
e|E| so that each ei is an ordered pair of vertices. Define the
incidence matrix I as a N ¥ |E| matrix such that for each
ek = (vi, vj) ∈ E, Ii,k = -1 and Ij,k = 1. Have x1, . . . , xN ∈ R|E|

be such that xi
T equals the ith row of I. Define the multiset

S = {x1, . . . , xN}. Have c1, c2 be two clusters that partition S

subject to the size constraint c c
N

1 2
2

= = . Let B1 and B2 be

a partition of V, where Bi = {vj|xj ∈ ci}, for i = 1, 2.
Let the function fj : R|E| → R take in a vector and return

the jth element of its argument. Computing the total distortion
of the cluster as in (19), we have

H c c z c

z c

i

z ci

j j i

z cij

i

i

1 2
2

1

2

2

1

2

,( ) = − ( )

= ( ) − ( )( )( )

∈=

∈==

∑∑

∑∑

θ

φ φ θ
11

E

∑ .

If ej ∈ E(B1, B2), then either fj(z) equals 1 for exactly
one z ∈ c1 and equals -1 for exactly one z ∈ c2 with all others
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equaling 0 and thus φ θj c
N

1
2( )( ) = and φ θj c

N
2

2( )( ) = − ,

or the same statements above but with c1 and c2 switched.
Furthermore, if ej ∉ E(B1, B2), then f(q(c1)) = fj(q(c2)) = 0.
Using these properties:
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Choice of B1* and B2*, or equivalently the choice of c1*
and c2*, that minimizes H(c1, c2) also maximizes |E(B1, B2)|,
since |E| and N are constant. Therefore, the NP-hard MAX
BISECTION problem reduces to size-constrained Euclidean
minimum sum-of-squares, which is equivalent up to a
polynomial-time transformation to finding P* in Problem
III.1 under Assumption III.1, so finding P* is also
NP-hard. �

The above theorem describes the caveat associated with
exploiting agent homogeneity when controlling single-leader
networks to target points. Although considering permutations
of target points can potentially bring a target point closer to a
system’s reachable subspace, determining how one can best
permute a target point is, in general, a NP-hard problem. The
remaining sections of this paper will discuss how to deal with
this computational complexity.

IV. NETWORK TOPOLOGIES WHERE
HOMOGENEITY CAN BE ADVANTAGEOUS

The previous section showed how, in order to fully
exploit agent homogeneity when controlling a single-leader
network to targets, it is necessary to solve the NP-hard
Problem III.1 under Assumption III.1. Example III.1 showed
one situation in which solving the NP-hard problem to find
the optimal permutation of a target point could bring it closer
to the reachable subspace of a single-leader network.
However, is not clear yet how commonly such an increase in
controllability can be achieved for general network topolo-
gies. The goal of this section is mainly to identify specific
classes of network topologies where there exist optimally
permuted target points which are closer to the system’s reach-
able subspace than their un-permuted counterparts, thereby
advocating the need to take homogeneity into account when
controlling single-leader networks. We will start by looking at

the case when agent positions are scalar, i.e., 1D, and then
later consider the general case where agents have nD position
coordinates.

4.1 Optimal permutations with 1D agents

To identify network topologies where optimally per-
muting target points is advantageous for homogeneous
single-leader networks with 1D agent positions, we will focus
our analysis on bounding how far away an optimally per-
muted target point is from a system’s reachable subspace. In
particular, for a given reachability matrix G associated with
the network topology of a system, the goal is to look at all
possible target points with norm 1 and bound the worst case
distance to the reachable subspace as posed in the problem
below:

Problem IV.1. Given a single-leader network with N � 2
follower agents, 1D agent positions, and reachable subspace
R(G), find

M Px
x P R1

1

2
,Γ Π Γ( ) = ( ){ }= ∈ ( )⊥max min

P
(20)

where Pa(b) is the projection of vector b onto a.

Note that M1(G) ∈ [0, 1], where M1(G) = 0 corresponds
to the best case scenario where any target point can be per-
muted onto the system’s reachable subspace. Meanwhile,
M1(G) = 1 corresponds to the worst case scenario when target
points exist that remain orthogonal to the system’s reachable
subspace no matter how they are permuted.

In the case when rank(G) = 1, i.e., when all follower
agents cannot be moved independently of one another, the
following theorem shows that such a worst case scenario
occurs.

Theorem IV.1. The solution to Problem IV.1 for when
rank(G) = 1 is given by M1(G) = 1.

Proof. Since rank(G) = 1, then R span( ) { }Γ = . Let x ∈ RN

be such that ||x|| = 1 and xT 0= . Then for any P ∈ P,

( ) ( ) .Px x p x P xT T T T T 01= = = =−

Thus, Π ΓR
Px( )⊥ ( ) =

2
1 for any P ∈ P and so M1(G) = 1. �

Such a result should not be too surprising, since if
rank(G) = 1, then all follower agents are confined to move
together. Under such a scenario, the closest that a single-leader
network can be to a target point is to have all agents go to the
centroid of the targets, which is invariant to permutations.
Fortunately, however, a situation where rank(G) = 1 only
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occurs for specific network topologies such as a star graph
where the leader is the center node, or a complete graph. Note
that neither of these network topologies are practical designs
for multi-agent systems where the goal is to have each agent
coordinate with only a subset of other agents while still be
robust to connections breaking in the network topology.

Fortunately, however, the previous result does not hold
true for single-leader networks where the reachable subspace
has higher rank, i.e., 1 < rank(G) � N, which accounts for the
majority of network topologies. To show this, the following
result must first be established.

Lemma IV.1. For a single-leader network as described in
Problem IV.1 with 1 < rank(G) � N, Px�R(G) for all P ∈ P
¤ x = 0.

Proof. First, we prove the necessary condition (‹). If x = 0,
then Px = 0 for all P ∈ P and 0 is orthogonal to all possible
subspaces.

To show the sufficient condition (⇒), two cases need to
be considered. First, if rank(G) = N, then R(G) = RN. In this
case, the only vector x which is orthogonal to R(G) is x = 0.
Now consider the case when 1 < rank(G) < N, which can only
occur when N � 3. Here, R(G) must be spanned by a basis
vector v ∈ RN that consists of 0s and at least 2 but less than N
1s. If Px�R(G) for all P ∈ P, then certainly vT(Px) = 0 for all
P ∈ P as well. Given i, j ∈ {1, . . . , N}, it is then possible to
find permutation matrices PijA ∈ and PijB ∈ P where

v P x v P x x xT
ijA

T
ijB i j( ) = ( ) = ⇒ =0 .

Since this can be done for any i, j ∈ {1, . . . , N}, it must be
that x = a for some a ∈ R. However, since vTx = 0, it must
be that a = 0 and thus x = 0. �

With this result, an important bound on M1(G) for
1 < rank(G) � N can be made.

Theorem IV.2. The solution to Problem IV.1 for when
1 < rank(G) � N is bounded by M1(G) < 1.

Proof. Since, when calculating M1(G), we only consider x
such that ||x|| = 1, it is not the case that x = 0. Therefore,
by Lemma IV.1, we see that for each target point x there
exists a P*(x) ∈ P such that P x x R*( ) /⊥ ( )Γ and so

Π ΓR
P x x( )⊥ ( )( ) <*

2
1 . Because this is true for all target

points x such that ||x|| = 1, we conclude that M1(G) < 1. �

Theorem IV.1 and IV.2 give insight into when taking
agent homogeneity into account can be advantageous when
controlling single-leader networks. In particular, they say
that with the exception of a small percentage of network

topologies (e.g., star graph with leader node as center and
complete graph), solving for the optimal permutation of a
target point can push the system beyond traditionally-
established limitations on its controllability.

4.2 Optimal permutations with nD agents

Although agent positions can be controlled independ-
ently along each dimension in a single-leader network, not all
results involving 1D agents can be naively applied to nD
agents. One detail that must be taken into account in the nD
case, which is not present in the 1D case, is the coupling
amongst dimensions due to the same permutation matrix
being applied to each dimensional component di(xT) of the
target point. To see why, consider the following nD generali-
zation of Problem IV.1 where one would like to bound how far
any optimally permuted target point can be from the system’s
reachable subspace along any dimension.

Problem IV.2. Given a single-leader network with N � 2
follower agents, nD agent positions, and reachable subspace
R(G) along each dimension, find

M Pd xn
d x
j n

P k n R k
j

Γ Π Γ( ) = ( )( ){ }{ }( ) =
=

∈ = ( )⊥max min max
, ,

1
1

1, ,

2

…
…P

..
(21)

What will be shown now is that when the dimensional-
ity of agents is high compared to the number of agents (i.e.,
n � N!), target points will exist which are always orthogonal
to the system’s reachable subspace along at least one dimen-
sion no matter how they are permuted. Even though most
current multi-agent applications only involve agent states
with low dimensionality (i.e., 2D or 3D positions), the fol-
lowing result is instructive in that it demonstrates a previously
unmentioned phenomenon that one should be aware of when
generalizing from 1D to nD agents.

Theorem IV.3. The solution to Problem IV.2 for when
n � N! and 1 � rank(G) < N is Mn(G) = 1.

Proof. To prove this theorem, we will construct a target point
x* ∈ RNn that will cause Mn(G) = 1. Assume that as stated in
the theorem, n � N! and 1 < rank(G) < N. Since the system is
not completely controllable, let x* be such that d1(x*) �R(G).
Moreover, let d2(x*), . . . , dN!(x*) represent all N! - 1 other
permutations of d1(x*). In that case, no matter which P ∈ P is
used, there is always a k ∈ {1, . . . , N!} such that

Pdk(x*)�R(G) and so Π ΓR kPd x( )⊥ ( )( ) =*
2

1. The ability to

construct such a target point x* means that Mn(G) = 1. �

V. SUBOPTIMAL ALGORITHMS

The goal of this section is to bring to awareness of how
the clustering representation discussed in Theorem III.2
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opens the door to many suboptimal approaches based on
clustering algorithms. This section will present some subop-
timal clustering-based algorithms, but note that this is by no
means an exhaustive list of approaches to solving the con-
strained clustering problem at hand.

5.1 Constrained k-means

The unconstrained version of the Euclidean minimum
sum-of-squares clustering problem in Problem III.2 has been
very well studied in machine learning and pattern recognition
literature. In particular, a commonly used method for finding
locally optimal solutions to the unconstrained clustering
problem is the k-means algorithm, e.g., [9]. However,
Theorem III.2 adds equality constraints on the size of indi-
vidual clusters. To handle this additional layer of complexity,
the constrained k-means clustering algorithm from [2] can be
used to find locally optimal clusterings which minimize (19),
while allowing for the minimum size of individual clusters to
be specified. To use this algorithm for suboptimally solving
the constrained clustering problem in Theorem III.2, equality
constraints on the cluster sizes can be imposed by simply
choosing the minimum cluster sizes so as to sum to N.

5.2 Compact clusters

Another approach to finding suboptimal solutions to the
clustering problem in Theorem III.2 is to look for compact
clusters, as defined by the following.

Definition V.1. In a clustering c1, . . . , ck of a multiset S of
1D points, a cluster ci is compact if �/xi1, xi2 ∈ ci and �/xj ∈ cj

such that xi1 < xj < xi2, "j � i.

It will be shown now that in a 1D homogeneous single-
leader network, the optimal clustering of target points for
solving the NP-hard clustering problem in Theorem III.2 is
always compact.

Lemma V.1. The optimal clustering c1*, . . . , ck* of a multi-
set S of 1D points, which minimizes (19) fixed |ci| for i = 1,
. . . , k, involves only compact clusters.

Proof. We start by showing that elements in every non-
compact clustering can always be reassigned to decrease (19)
without changing the cluster sizes. Assume c1, . . . , ck are not
all compact, then $xa1, xa2 ∈ ca and xb ∈ cb such that
xa1 < xb < xa2, for some ca and cb where a � b. Furthermore,
define

H c c m m z mo k k i

z ci

k

i

1 1
2

1

, , , , , ,… …( ) = −( )
∈=
∑∑

where H(c1, . . . , ck) � Ho(c1, . . . , ck, m1, . . . , mk) with
equality when mi = q(ci), for i = 1, . . . , k. The total distortion
of the clustering can be rewritten as

H c c H c c c c
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k o k k
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b

z ca b

, , , .( ) = +
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If q(ca) � q(cb), assign ĉa the |ca| largest elements of
ca � cb, while giving ĉb the remaining elements. Otherwise,
if q(ca) � q(cb), then let ĉa have the |ca| smallest elements
of ca � cb, while ĉb gets the rest. Furthermore, define
ˆ ,c c i a bi i= ∀ ≠ . Notice that ĉ ci i= , for i = 1, . . . , k.
Then, since after the reassignment, θ θĉ ca a( ) ≠ ( ) and
θ θĉ cb b( ) ≠ ( ) ,

H c c Q R c c c c

Q R c c c c
k a b a b

a b a b

1, , 2 , , ,

2 , , ,

…( ) = − ( ) ( )( )
≥ − ( ) ( )
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o k k
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ˆ ˆ

ˆ ˆ
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1
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θ θ

Whenever a clustering c1, . . . , ck is not all compact, it is
possible to obtain a new clustering ĉ1, . . . , ĉk with a lower
total distortion. Since there are only a finite number of ways
to cluster points in S, an optimal cluster must exist and it must
involve only compact clusters. �

As a consequence of Lemma V.1, the number of clus-
terings or permutations that need to be considered when
searching for an optimal solution to Problem III.1 is
decreased from at most N! to now at most k!.

Theorem V.1. Finding c1*, . . . , ck* to minimize (19) for a 1D
single-leader network requires considering at most k!
clusterings.

Proof. For 1D points, only the ordering of the k compact
clusterings matter in finding c1*, . . . , ck*. Thus, at most only
k! clusterings need to be considered. �

Note that, although a nD generalization of Lemma V.1
may exist, any further investigation requires further analysis
and would be tangential to the goal of this section, which was
to simply demonstrate how the NP-hard clustering problem in
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Theorem III.2 could be solved using a variety of suboptimal
methods.

VI. CONCLUSIONS

This paper investigated the role of homogeneity when
controlling agents in a single-leader network to a set of target
points. When agents are all capable of the same tasks at each
target, the target point can be permuted while still expressing
the same intended goal for the system. However, in networks
which are not completely controllable, permuting a target
point could potentially bring it closer to the system’s reach-
able subspace. To take this special property of homogeneous
networks into account, the notion of controllability in a
single-leader network was extended from a point-to-point
property to a point-to-set property of the system. Here, the set
corresponded to all permutations of a target point and one
would like to find the permutation which brings the target
closest to the reachable subspace. Finding this optimal per-
mutation of a target point was shown to be a NP-hard
problem. However, specific network topologies were identi-
fied in which exploiting agent homogeneity could allow for
the system to surpass the limitations on its controllability.
Moreover, clustering-based approaches were presented to
solve for suboptimal target point permutations.
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