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Abstract— In this paper we study decentralized, networked was first proposed in [9], and later investigated in [10].
systems whose interaction dynamics are given by a nearest- |n [10], necessary conditions for controllability were giv
neighbor averaging rule. By letting one node in the network entirely in terms of the graph topology and, as such, it
take on the role of a leader in the sense that this node provide . . . : . '
the control input to the entire system, we can ask questions proyldes a starting point for the “”de”ak'”qs in this pawer
concerning the controllability. In particular, we show that the  particular, we show that when the network is not completely
controllable subspaces associated with such systems have acontrollable, the controllable subspace can be given ahgrap
direct, graph theoretic interpretation in terms of so-called theoretic interpretation. What this means is that it is jies
quotient graphs, providing us with a smaller, approximate 4 construct a smaller, completely controllable netwoHe(t

bisimulation of the original network. led trollabl tient that i ivalent t
Index Terms— Networked control systems, Network analysis so-calledcontrollable quotient graphthat is equivalent to

and control, Communication networks the original network in terms of controllable subspacessTh
design allows the control designer to focus directly on a
. INTRODUCTION smaller network when producing control laws.

Moreover, it is shown that the dynamics associated with

The emergence Of_ decentralized, mqbﬂe multi-agent Nefhe uncontrollable part of the network is asymptotically
works, such as distributed robots, mobile sensor networ able for all connected networks. As such, the contradlabl

or mobile ad-hoc commun_|ca_t|ons networks, has IMPOS&d otient graph is aapproximate bisimulatioof the original

new challenges when designing control algorithms. The twork, in the sense of [11]

e e el a0ene TV The cutine of this paper i as follows: I Secton
P ’ ' 9, we briefly review the basic premises behind leader-follower

ity resources. In particular, the mformatlon flow betw.e?nnetworks and recall some definitions from algebraic graph
nodes of the network must be taken into account explicitl

already at the design phase, and a number of approaches h ey In Section 1ll, we review some results from [10],
been proposed for addressing this problem, e.g. [1], (2], [3@1, allowing us to study controllability of single-leadeet-

41 151 161 [7]. 8 works from a graph-theoretic vantage-point. Quotient bsap
[ ]I’?[ . [d?’ [71, E‘ ].h ther the inf tion flow | ‘ obtained through so-callegqjuitable partitionsof the graph,
€gardiess of whether the information flow IS genera egre the topic of Section IV, while the uncontrollable part

over comm_unication channels or throggh sensory inputgf network is discussed in Section V. The main results of
the under]ylng geomgtry 'S playing an important role. Fofhis paper are given in Section VI, where the Theorem 1

formalizes that thequotient graphrepresents a controllable
ffiodel reduction of the original system. Finally, in Section
\/1] simulations are shown to emphasize the relevance of the
&in Theorem.

sensors, it can only detect neighboring agents if they a
located in a disk around the agent. Similarly, if the sensor
a camera, the area becomes a wedge rather than a disk.

to make the interaction geometry explicit when designing
control laws is not an easy task, and an alternative view
is to treat interactions as purely combinatorial. In other
words, all that matters is whether or not an interactiontexis | this section we start with some basic notions in graph

between agents, and under certain assumptions on the glofplory. In multi-agents systems, it is common to let the sode
interaction topology, one can derive remarkably strong angk a graph represent the agents, and to let the arcs in the
elegant results. (For a representative sample, see [1[7[6]  graph represent the inter-agent communication links.

What then remains to be shown is that the actual geometry| et the undirected graphs be given by the pai(V; &),

in fact satisfies the combinatorial assumptions. whereV = {1,...,n} is a set ofn vertices, anc is a set

In this paper, we continue down this path, by investigatings egges. We can associate tdjacency matrix{ € R"*"
controllability from a graph-theoretic point-of-view, v \ith &, whose entries satisfii,; = 1 if (j,k) € £. Two

nodes;j andk are neighbors ifj, k) € £, and the set of the
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II. LEADER FOLLOWER CONSENSUSNETWORKS



In this paper we let the state of each nodg, be scalar. the unitary matrix comprised of its pairwise orthogonaltuni
(This does not affect the generality of the derived resultseigenvectors. Sinc& = UU” B, by factoring the matrix U
The standard, consensus algorithm is the update law from the left in (4),C assumes the form

Bi(t) = Y (x;(t) — wi(t)), (1) C=U[U'B AU'B --- A"'UTB].

7€ If one of the columns ofU is perpendicular to all the

or equivalentlyi(t) = —Lx(t), wherex(t) is the vector with - columns of B, then C' will have a row equal to zero and
the states of all nodes at timeand. is the graph Laplacian. hence be rank deficient. On the other hand, in the case of
Let D € R™*" be the diagonal matrix of the degrees of theyne leader, if any two eigenvalues of are equal, then
nodes, it is easy to verify thal =D — H. C will have two linearly dependent rows, and again, the
Under some connectivity conditions, the consensus alg@ontrollability matrix becomes rank deficient, as shown in
rithm is guaranteed to converge, i.Bm; ..o z;(t) =g, [9]. Moreover, if the system iteader symmetri¢hen there

i€{l,...,n}, whereg is a constant depending afy and js a non-identity permutation/ (matrix defined over the
on the initial conditionszy = x(0). (See for example [1], follower nodesF) such that/A = A.J and in that case the
[12], [13].) system (3) is uncontrollable because one of the eigenector

As in [7], [10], [14], we imagine that a subset of the agentsf A4 is also orthogonal to all columns d8, as shown in
have superior sensing, computation, or communicatior abjlj 5].
ities. We thus partition the node set into a leader sel In this paper, we will focus on networks that are leader
of cardinalityn;, and a follower set” of cardinalityns, SO symmetric, restricted to the case when= 1, i.e. when there
thatL N F' =@ andL U F = V. Leaders differ in their state only is one leader present. This is related to the necessity t
update law in that they can arbitrarily update their posgio yse the most simple framework to control a set of followers.
while the followers execute the agreement procedure (1), aBy moving only one super-node, the leader, we are able to
are therefore controlled by the leaders. control all the agents belonging to the network.

Under the assumption that the first agents are followers,  pefinition 1 (LSL Network): A network is said to be

and the lasty, = n — ny are leaders, the introduction of | S| (Leader-Symmetric, Single Leader) if it leader-
leaders in the network induces a partition in the the grapfymmetric with a single leader.

Laplacian£ that becomes In the following we give a graph-theoretic interpretatioh o
Li|Lp the controllable part of a L& network starting from the
L= , i
{ s ] analysis of the controllable subspace.
with £; € Rnxns, £, = R™*™ and Ly, € R"7 %™, Note IV. EQUITABLE PARTITIONS AND QUOTIENT GRAPHS
that the subscriptg andl denote respectively the affiliation  To obtain the controllable quotient graphs, the notion of
with the leaders and followers set. anequitable partitionis needed. (We refer the readers to [16]

The control system we now consider is the controlledor more details about this subject.)
agreement dynamics (or leader-follower system), in which Definition 2 (Equitable Partition):A partition = of V,
followers evolve through the Laplacian-based dynamics with cells Cy,Cs,...,C, is said to beequitableif each
. _ _ node in C; has the same number of neighbors @y
i.lf((tt)):—uéfxf(t) Lpa(t) (2) Vi, je{l,...,7},i#j, with r = |r|, which denotes the
’ cardinality of the partition.
where zy and z; are respectively the state vectors of theThe directed graph with thecells of r as its vertices anbi;
followers and the leaders, andt) denotes the exogenousedges from theéth to thejth cells ofr is called thequotient
control signal dictated by the leaders. graph and it is denoted by>/x. Moreover, a partitionr
Ill. CONTROLLABILITY OF SINGLE-LEADER NETwoRrks ~ With at Ieggt one <_:e|| with more than one node !s said 1o
_ i i be aNontrivial Equitable Partition(NEP) and the adjacency
In this section we re_call some previous results of relevanqﬁatrix of this quotient is given b§((G/x); = by;.
to the developments in this paper. To conform to standard pefinition 3 (Characteristic Vector)A  characteristic
nota.t|0n, we denpte withe = ny thg number of followers, vector p; € R™*! of a nontrivial cellC; is defined as:
we identify matricesA and B with —£; € R"*" and

—L € R respectively, and we will equate; and x; pi]; = { 1 ifjed;
with = andu. Thus the system (2) becomes ! 0 otherwise.
#(t) = Az(t) + Bu(t), ©) De_finition 4 (Characteri_st_ic Matrix):A _ characteris_tic
_ N _ matrix P € R™*" of a partitionm of V(G) is a matrix with
with controllability matrix the characteristic vectors of the cell as its columns.
= [ B AB ... A"-1B } _ 4) Definition 5 (Leader-Invariant Equitable Partition (LEP))

By the leader-invariant equitable partition (LEP), we
As A is symmetric it can be written on the fortAAU?,  understand the maximal equitable partitiogy = 7 |J 71,
whereA is the diagonal matrix of eigenvalues dfandU is  wherenr = {CM ,CM ... CM} is the maximal equitable



partition of followers such that the cardinality ofr The range space @ corresponds to the spanning set of the
is minimal (i.e. has the fewest cells), and the leader characteristic vectors afg, i.e.

belongs to the singleton cell{; = {L} of the partition B, 0 0
Remark 1:As shown in [15], if the network is L& , R(C) — 0 0
then the LEP is nontrivial, i.e. not all cells are singletons (€) = span ) ) :
: : 0
V. CONTROLLABILITY DECOMPOSITION 0 0 E
f We first rec_a_ll the coqcepts of the Kalman decomposnm\r,\vhere E; is a column vector of ones, with, — |CM|
or controllability. Considering the system (3) of a 1S i
components.

network, we construct the controllability matrix (4) and,
as previously discussed, we know that it is rank deficient. _ o v
The controllability subspace, is equal to the range space Froof: We denote by the cardinality of each set;

of C, (R(C)), andrank(C) defines the dimension of this Of the partitionr of &, and we now conj\s}ider the graph
subspace. G’ in which the firstr, vertices belong ta”;", the second

Consider now any basis for this subspace. Lef2 Vertices belong taZ3”, and so on. Let’’ be the graph
d = rank(C) and let (p1,ps,...,ps) be the orthogonal, Laplguan of G’ andP(G/wF) € R”XT bg thg characteristic
unit length vectors of this basis. We can now use thedBatrix of G/mr. Recalling Definition 4, in this case we have

vectors to obtain the first columns of the transformation E, 0 0
matrix 7 = [ py | p2 | ... | pal--- ] 0 B 0
As 7 must be amn x n square matrix, we use then— d 0 0
orthogonal, unit length vectors of the basis belonging to P(G/mr) = _ _ : ©)
subspacé&k*(C) to produceT . Let (pgi1, para;---,pn) bE : : 0
these vectorsZ is non singular and produces the following 0 0 Eq
system: where E; € R"*! is a vector with ones in each position.
P | e Now, sinced’ = —L', is symmetric it can be rewritten as a
z=A4z+ By, r=T o= [ Tye } O block matrix:
where Ay Ay AL
_ _ AL AL . Al
= A 0 _ B , 21 22 2,5
— -1 — ¢ — — -1 — ¢ A = . . 5 10
A=T AT [0 Auc] B=T"1'B [0].(6) . : (10)
Here the subscripts and uc refer to the controllable and Agr o AL
uncontrollable parts respectively. where each diagonal submatri¥,; € R":*": represents the

The reason whyA in the decomposition (6) takes onset M, and each other submatrit;; € R"*"i represents
this form, i.e. thatA is block diagonal, follows directly the connections between nodes belonging to@é“t and
from the fact thatA = A” and 7 is orthonormal, i.e. M. From Definition 2, for each submatrid, ., we have
AT = (T-VAT)T =T ATT = T-1AT = A, ’ N ) !

As a result, we can decouple the system into two different z]: P z]: ajok Vit e oM. (11)
subsystems, namely — P

Ze = AcZe + Beu (7)  Moreover,B" = —L';, has always the form
for the controllable part of the network, and 0
i'uc = Aucjuc (8) B = (12)
for the uncontrollable part. %

Proposition 1: Let G be a single leader network with _
dynamics described by (3). Its uncontrollable subsystem (8ith E column vectors of ones witth elements, wheré

is always asymptotically stable, i.e denotes the number of the neighbors of the leader. The
o controllability matrix can thus be recursively calculatesl
lim Zy.(t) = 0.
t—o0 C = [ B A -B A -AB .. Al A/(n—Q)B/ ] ,

Proof: Since we apply a similarity transformatidhto  and, sinced’ is as in (10) with condition (11) and’ is as
A, this doesn’t change its eigenvalues. So we need to proire(12), it becomes

that A is negative definite, which follows from the fact that A
. L. - . 0 C'ln ~
L is positive definite, as shown in [14]. | _ _ Cij = fijBi
Proposition 2 (Range space of Clet G be a LSL net- C=1o0 K fii €R (13)

work with dynamics described by (3), and te{; be its LEP. E - Csy



So the range space 6f (13) is such that

E,y 0 0
0 By 0
R(C) = span 0 0 :
: : 0
0 0 B

V1. APPROXIMATE BISIMULATION THROUGH
EQUITABLE PARTITION GRAPH

A common theme in the theory of distributed processes
and in systems and control theory is to characterize systems
which are “externally equivalent”. The intuitive idea isath
we only want to distinguish between two systems if the
distinction can be detected by an external system intemgcti

which corresponds to the spanning set of the characterisith these systems. This is a fundamental notion in design,

vectors ofrg, which proves the proposition. |

allowing us to switch between externally equivalent repre-

Corollary 1: The dimension of the controllable subspacéentations of the same system and to reduce subsystems to

of the networkG is equal to the cardinality of » of its LEP.
Proof:
ning set of the characteristic vectors of. It follows that

The range space of' is equal to the span-

externally equivalent but simpler subsystems.
A crucial notion in this sense is the concept of bisimu-
lation. The notion of bisimulation, introduced in [17], and

dim(R(C)), is equal to the number of the columns of itswhich has been further developed for example in [18], [19],

characteristic matrix, i.e. the number of setsmgf. [ |

[20], is one such formal notion of abstraction that has been

Corollary 2: Agents of the network belonging to each setsed for reducing the complexity of finite state systems
CM of 71 starting from the same point will move together@nd expresses when a subprocess can be considered to be

ie.Vt>0,
21(0) =+ =2, (0) 1 (t) = =, (1)
s = 5
Tn—rg (0) == l‘n(O) LTp—rg (t) == l‘n(t)

Proof: A possibile choice foR(C)* is to take vectors
with column sums to zero and with block € R7:*(i—1)
in the position associate to each blagkof R(C'), such that

P, = { I”l‘Tl } :
B 7‘1',><(’I‘7',—1)
In other words we have tha&(C)*+ = J;_, R; where
[ Ell | [ E12 | [ Ef;l—l |
0 0 0
R, = span i , . Lo
. 0 | | 0 | . 0 ]
0 0 0
Ey | | Ea Eiry
Ry = span - - ,
L 0 | L 0 | . 0 ]
and so on, where
P 0
L L P
i = s by = <o
0 0
with PeR**! st P= _11

It follows that for every blockE;, i.e. for every seC, we
have,vt > 0

21(0) =+ =2, (0) r1(t) = =z, (1)
: = :
Tp—r,(0) =+ = 2,(0) Tpp, (t) = -+ = 2 (t)
which proves the corollary. [ |

externally equivalent to another (hopefully simpler) mss.

Bisimulation is a concept of equivalence that has become
a useful tool in the analysis of concurrent processes. It
also reflects classical notions in systems and control theor
such that state - space equivalence of dynamical systems,
and especially the reduction of a dynamical system to an
equivalent system with minimal state - space dimension.

In the following we apply concepts of approximate
bisimulations to multi agent systems. We aim to find a
subgraph of the original graph that we can use to move all
the agents belonging to the network, and we aim to give
a graphic and immediate interpretation to this one using
equitable partitions. Indeed, since the uncontrollable ph
the system is always asymptotically stable, we can simplify
the original network with one which corresponds exactly to
the controllable part of the network. In order to move all the
agents of the network, it is possible to control this smaller
entity and ignoring the uncontrollable part. Moreover, we
will prove that this controllable subgraph can be found by
investigating the network through equitable partitions.

Consider the controllability decomposition (5,6) with
T=[T|T]=[T T2 - T:|T] (14

Tlinv,
Tinv :
_1 o C _ .
= { TinVye ] | TEine, | (13)
TinVy.

where 7. denote the firsts = dim(R(C)) columns of T,
and7inv, the firsts rows of 7 1.
Therefore

A, =Tinv, A 7., B, =Tinv, B,

which allows us to state the following lemma.

(16)

Lemma 1:Let G be a LSL network, with dynamics
described by (3), and let,; be its LEP.7inv, (15) is such
that

(17)



Proof: T '=Tinv=(TT T)"' 7"  with matrix of the quotient grapft;(G/mr) (Lemma 9.3.1 in
T = [ 7. | Tue } and, as we proved in Proposition 2,[16]). Moreover, since the degree of nodes belonging to the
7. correspond to the characteristic matrix ©f. SinceZ. same setCM is equal, andTinv. satisfies (17),1_)fc is a
and7,. are orthonormal, the matrig* = (77 7) is such diagonal matrix whose diagonal entries represent the degre

that: of nodes belonging to each séfV. It follows that A. in
X AR 75| 0 (20) corresponds te-L;(G/mar).
= T = > | urthermore, withB as in , the decomposition is
T 0 | 7L T 0 | 75 Furth ith3 as in (12), the d ition (16) i
such that each entry; of the matrix B, satisfies:
where 75 € R**¢ is a diagonal matrix s.{71];; = |CM| M
i * (n—s8)x (n—s) ritTiign) 1 if C;" is connected
as shown in [16], and3; € R . PUED D7 b VR -
- . . . b= e b= to the leader
T+ is a diagonal block matrix and, its inverse can be easily ICM .
) 0 otherwise.
evaluated:
o (17 1) | 0 If we define X as the number of set€’?| connected with
(T7)" = { < 0 (7T Too) T } ) the leader, we can conclude that the matrix
. _A. | -B
ie. ¢ ¢
1 [ _Bc X ] (23)
G| 0 0 |0 0 0 :
! corresponds exactly t6(G/ ), which proves the theorem.
*\—1 __ ]
(T =] O 0 |0 0 0
0 0 |0 0 0
1O VII. A SIMULATION STUDY
0 0 | (Ta Tue) ™!
It follows that
(zH”
Ic
1 [ T : O C O ®
T = (7%~ C — . 18 v 2 3 L
T { T ] (1" (18) (b)
|C2]
TNV, Fig. 1. The graph of the network and the quotient graph cpoeding to
controllable part (b).
Hence 7T
Tlinv, = %, (19) As an application of the proposed method, consider a net-
|G work consisting of followers and one leader. As usual, lead-
which proves the lemma. B ers and followers differ in that leaders move autonomously

and “herd” the followers, which move using the consensus
protocol. Assume moreover that the followers are layed out
in a grid, as in Fig. 1(a). Since such structure is @ILS

Theorem 1 (Controllable Subspacd)et G be a LSL
network with dynamics (3), and let;; be its LEP. The

controllable subspace ¢f corresponds to the quotient graIOhnetwork, it is not completely controllable, and for thissea

G/mu- we cannot move it from any initial point to any arbitrarily
Proof: It is well known that £ e R(»+Dx(n+1)  point.

is such thatf =D —H, where D is the diagonal de- Consider now a translation of the network: due to the fact

gree matrix and’™ is the adjacency matrix. Hence thatthe system is not completely controllable, this moveime

A=—L;=—(D; —H;), whereD; and M, are respec- is not feasible. In Fig. 2(a), 2(b), 2(c), we report some

tively obtained by taking the firsi rows and columns P  steps of a translation process of the entire network, and in

andH. We have Fig. 2(d), 2(e), 2(f), we report the same steps of the same
Dy =T 'D; T tlrz)r;slation, but applied to the quotient graph shown in Fig.
A=—(D;—H;) wh -
(Dy =7Hy)  where He— TYH, T We suppose that an external unit tells the leader the trajec-
f = f . g
- tory to follow, or that the leader has planning capabilifies
and the matrix4. in (16) can be calculated as order to solve the planning problem. Starting from the ahiti
A = —(Do—Tpe 20 situation of Fig. Z(a), ngder moves alongaxis dragging
(Dye = Hye), (20) followers, whose disposition (Fig. 2(b), 2(c)) asymptalig
where - converge to the controllable quotient graph (Fig. 2(e)))2(f
D¢e =Tinv.Dy T, (21) This result emphasize the importance of a graph theoretic

T ' characterization of the controllable part of the network,
Hye =TinveHy Te. (22) which enables the designer to fucus directly on the smaller,
Since 7. is equal to the characteristic matrix afz, and approximate bisimulation of the original graph, when desig
Tinv, = (T.7.)7'71, (22) corresponds to the adjacencying control laws.
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Fig. 2. Translation process of the entire network (a, b, o}l af its quotient graph (d, e, f).

VIII. CONCLUSIONS

(7]

The problem of controllability of a group of autonomous
agents has been considered. A leader-follower linear cense 8]
sus network has been used to model the interactions among
the nodes. It has been shown that when the network is not
completely controllable, we can give a graphic theoreticl
interpretation to the controllability subspace, and thiat iq
is possible to construct a smaller completely controllable
network that is controllable-equivalent to the originakeon
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