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Abstract— In this paper we study decentralized, networked
systems whose interaction dynamics are given by a nearest-
neighbor averaging rule. By letting one node in the network
take on the role of a leader in the sense that this node provides
the control input to the entire system, we can ask questions
concerning the controllability. In particular, we show that the
controllable subspaces associated with such systems have a
direct, graph theoretic interpretation in terms of so-called
quotient graphs, providing us with a smaller, approximate
bisimulation of the original network.

Index Terms— Networked control systems, Network analysis
and control, Communication networks

I. I NTRODUCTION

The emergence of decentralized, mobile multi-agent net-
works, such as distributed robots, mobile sensor networks,
or mobile ad-hoc communications networks, has imposed
new challenges when designing control algorithms. These
challenges are due to the fact that the individual agents have
limited computational, communications, sensing, and mobil-
ity resources. In particular, the information flow between
nodes of the network must be taken into account explicitly
already at the design phase, and a number of approaches have
been proposed for addressing this problem, e.g. [1], [2], [3],
[4], [5], [6], [7], [8].

Regardless of whether the information flow is generated
over communication channels or through sensory inputs,
the underlying geometry is playing an important role. For
example, if an agent is equipped with omnidirectional range
sensors, it can only detect neighboring agents if they are
located in a disk around the agent. Similarly, if the sensor is
a camera, the area becomes a wedge rather than a disk. But,
to make the interaction geometry explicit when designing
control laws is not an easy task, and an alternative view
is to treat interactions as purely combinatorial. In other
words, all that matters is whether or not an interaction exists
between agents, and under certain assumptions on the global
interaction topology, one can derive remarkably strong and
elegant results. (For a representative sample, see [1], [6], [7].)
What then remains to be shown is that the actual geometry
in fact satisfies the combinatorial assumptions.

In this paper, we continue down this path, by investigating
controllability from a graph-theoretic point-of-view, which
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was first proposed in [9], and later investigated in [10].
In [10], necessary conditions for controllability were given
entirely in terms of the graph topology and, as such, it
provides a starting point for the undertakings in this paper. In
particular, we show that when the network is not completely
controllable, the controllable subspace can be given a graph-
theoretic interpretation. What this means is that it is possible
to construct a smaller, completely controllable network (the
so-calledcontrollable quotient graph) that is equivalent to
the original network in terms of controllable subspaces. This
design allows the control designer to focus directly on a
smaller network when producing control laws.

Moreover, it is shown that the dynamics associated with
the uncontrollable part of the network is asymptotically
stable for all connected networks. As such, the controllable
quotient graph is anapproximate bisimulationof the original
network, in the sense of [11].

The outline of this paper is as follows: In Section II,
we briefly review the basic premises behind leader-follower
networks and recall some definitions from algebraic graph
theory. In Section III, we review some results from [10],
[9], allowing us to study controllability of single-leadernet-
works from a graph-theoretic vantage-point. Quotient graphs,
obtained through so-calledequitable partitionsof the graph,
are the topic of Section IV, while the uncontrollable part
of network is discussed in Section V. The main results of
this paper are given in Section VI, where the Theorem 1
formalizes that thequotient graphrepresents a controllable
model reduction of the original system. Finally, in Section
VII simulations are shown to emphasize the relevance of the
main Theorem.

II. L EADER FOLLOWER CONSENSUSNETWORKS

In this section we start with some basic notions in graph
theory. In multi-agents systems, it is common to let the nodes
of a graph represent the agents, and to let the arcs in the
graph represent the inter-agent communication links.

Let the undirected graphG be given by the pair(V, E),
whereV = {1, . . . , n} is a set ofn vertices, andE is a set
of edges. We can associate theadjacency matrixH ∈ Rn×n

with G, whose entries satisfyhkj = 1 if (j, k) ∈ E . Two
nodesj andk are neighbors if(j, k) ∈ E , and the set of the
neighbors of the nodej is defined asNj = {k | [H]jk = 1}.
The degree of a node is given by the number of its neighbors,
and a graphG is connectedif there is a path between any
pair of distinct nodes, where a pathi0i1 . . . iS is a finite
sequence of nodes such thatik−1 ∈ Nk with k = 2, 3 . . . S.



In this paper we let the state of each node,xi, be scalar.
(This does not affect the generality of the derived results.)
The standard, consensus algorithm is the update law

ẋi(t) =
∑

j∈Ni

(xj(t) − xi(t)), (1)

or equivalentlyẋ(t) = −Lx(t), wherex(t) is the vector with
the states of all nodes at timet, andL is the graph Laplacian.
Let D ∈ R

n×n be the diagonal matrix of the degrees of the
nodes, it is easy to verify thatL = D −H.

Under some connectivity conditions, the consensus algo-
rithm is guaranteed to converge, i.e.limt→+∞ xi(t) = g,
i ∈ {1, . . . , n}, whereg is a constant depending onL, and
on the initial conditionsx0 = x(0). (See for example [1],
[12], [13].)

As in [7], [10], [14], we imagine that a subset of the agents
have superior sensing, computation, or communication abil-
ities. We thus partition the node setV into a leader setL
of cardinalitynl, and a follower setF of cardinalitynf , so
thatL ∩ F = ∅ andL ∪ F = V . Leaders differ in their state
update law in that they can arbitrarily update their positions,
while the followers execute the agreement procedure (1), and
are therefore controlled by the leaders.

Under the assumption that the firstnf agents are followers,
and the lastnl = n − nf are leaders, the introduction of
leaders in the network induces a partition in the the graph
LaplacianL that becomes

L =

[
Lf Lfl

LT
fl Ll

]
,

with Lf ∈ R
nf×nf , Ll =∈ R

nl×nl andLfl ∈ R
nf×nl . Note

that the subscriptsf and l denote respectively the affiliation
with the leaders and followers set.

The control system we now consider is the controlled
agreement dynamics (or leader-follower system), in which
followers evolve through the Laplacian-based dynamics

ẋf (t) = −Lfxf (t) − Lflxl(t)
xl(t) = u(t),

(2)

where xf and xl are respectively the state vectors of the
followers and the leaders, andu(t) denotes the exogenous
control signal dictated by the leaders.

III. C ONTROLLABILITY OF SINGLE-LEADER NETWORKS

In this section we recall some previous results of relevance
to the developments in this paper. To conform to standard
notation, we denote withn = nf the number of followers,
we identify matricesA and B with −Lf ∈ R

n×n and
−Lfl ∈ R

n×1 respectively, and we will equatexf and xl

with x andu. Thus the system (2) becomes

ẋ(t) = Ax(t) + Bu(t), (3)

with controllability matrix

C =
[

B AB · · · An−1B
]
. (4)

As A is symmetric it can be written on the formUΛUT ,
whereΛ is the diagonal matrix of eigenvalues ofA andU is

the unitary matrix comprised of its pairwise orthogonal unit
eigenvectors. SinceB = UUT B, by factoring the matrix U
from the left in (4),C assumes the form

C = U
[

UT B ΛUT B · · · Λn−1UT B
]
.

If one of the columns ofU is perpendicular to all the
columns ofB, then C will have a row equal to zero and
hence be rank deficient. On the other hand, in the case of
one leader, if any two eigenvalues ofA are equal, then
C will have two linearly dependent rows, and again, the
controllability matrix becomes rank deficient, as shown in
[9]. Moreover, if the system isleader symmetricthen there
is a non-identity permutationJ (matrix defined over the
follower nodesF ) such thatJA = AJ and in that case the
system (3) is uncontrollable because one of the eigenvectors
of A is also orthogonal to all columns ofB, as shown in
[15].

In this paper, we will focus on networks that are leader
symmetric, restricted to the case whennl = 1, i.e. when there
only is one leader present. This is related to the necessity to
use the most simple framework to control a set of followers.
By moving only one super-node, the leader, we are able to
control all the agents belonging to the network.

Definition 1 (LS2L Network): A network is said to be
LS2L (Leader-Symmetric, Single Leader) if it leader-
symmetric with a single leader.
In the following we give a graph-theoretic interpretation of
the controllable part of a LS2L network starting from the
analysis of the controllable subspace.

IV. EQUITABLE PARTITIONS AND QUOTIENT GRAPHS

To obtain the controllable quotient graphs, the notion of
anequitable partitionis needed. (We refer the readers to [16]
for more details about this subject.)

Definition 2 (Equitable Partition):A partition π of V ,
with cells C1, C2, . . . , Cr is said to beequitable if each
node in Ci has the same number of neighbors inCj

∀i, j ∈ {1, . . . , r}, i 6= j, with r = |π|, which denotes the
cardinality of the partition.
The directed graph with ther cells ofπ as its vertices andbij

edges from theith to thejth cells ofπ is called thequotient
graph, and it is denoted byG/π. Moreover, a partitionπ
with at least one cell with more than one node is said to
be aNontrivial Equitable Partition(NEP) and the adjacency
matrix of this quotient is given byH(G/π)ij = bij .

Definition 3 (Characteristic Vector):A characteristic
vector pi ∈ R

n×1 of a nontrivial cellCi is defined as:

[pi]j =

{
1 if j ∈ Ci

0 otherwise.

Definition 4 (Characteristic Matrix):A characteristic
matrix P ∈ Rn×r of a partitionπ of V (G) is a matrix with
the characteristic vectors of the cell as its columns.

Definition 5 (Leader-Invariant Equitable Partition (LEP)):
By the leader-invariant equitable partition (LEP), we
understand the maximal equitable partitionπM = πF

⋃
πL,

whereπF = {CM
1 , CM

2 , . . . , CM
s } is the maximal equitable



partition of followers such that the cardinality ofπF

is minimal (i.e. has the fewest cells), and the leaderL
belongs to the singleton cellCM

s+1 = {L} of the partition
πL = {CM

s+1}.
Remark 1:As shown in [15], if the network is LS2L ,

then the LEP is nontrivial, i.e. not all cells are singletons.

V. CONTROLLABILITY DECOMPOSITION

We first recall the concepts of the Kalman decomposition
for controllability. Considering the system (3) of a LS2L
network, we construct the controllability matrix (4) and,
as previously discussed, we know that it is rank deficient.
The controllability subspace, is equal to the range space
of C, (R(C)), and rank(C) defines the dimension of this
subspace.

Consider now any basis for this subspace. Let
d = rank(C) and let (p1, p2, . . . , pd) be the orthogonal,
unit length vectors of this basis. We can now use these
vectors to obtain the firstd columns of the transformation
matrix T =

[
p1 p2 . . . pd . . .

]
.

As T must be ann × n square matrix, we use thenn − d
orthogonal, unit length vectors of the basis belonging to
subspaceR⊥(C) to produceT . Let (pd+1, pd+2, . . . , pn) be
these vectors.T is non singular and produces the following
system:

˙̄x = Āx̄ + B̄u, x̄ = T −1x =

[
x̄c

x̄uc

]
, (5)

where

Ā = T −1AT =

[
Āc 0
0 Āuc

]
B̄ = T −1B =

[
B̄c

0

]
. (6)

Here the subscriptsc anduc refer to the controllable and
uncontrollable parts respectively.

The reason whyĀ in the decomposition (6) takes on
this form, i.e. thatĀ is block diagonal, follows directly
from the fact thatA = AT and T is orthonormal, i.e.
ĀT = (T −1 A T )T = T −1AT T = T −1AT = Ā.

As a result, we can decouple the system into two different
subsystems, namely

˙̄xc = Ācx̄c + B̄cu (7)

for the controllable part of the network, and

˙̄xuc = Āucx̄uc (8)

for the uncontrollable part.
Proposition 1: Let G be a single leader network with

dynamics described by (3). Its uncontrollable subsystem (8)
is always asymptotically stable, i.e

lim
t→∞

x̄uc(t) = 0.

Proof: Since we apply a similarity transformationT to
A, this doesn’t change its eigenvalues. So we need to prove
that A is negative definite, which follows from the fact that
Lf is positive definite, as shown in [14].

Proposition 2 (Range space of C):Let G be a LS2L net-
work with dynamics described by (3), and letπM be its LEP.

The range space ofC corresponds to the spanning set of the
characteristic vectors ofπF , i.e.

R(C) = span










E1

0
0
...
0









0
E2

0
...
0




· · ·





0
0
...
0
Es










where Ei is a column vector of ones, withri = |CM
i |

components.

Proof: We denote byri the cardinality of each setCM
i

of the partitionπF of G, and we now consider the graph
G′ in which the firstr1 vertices belong toCM

1 , the second
r2 vertices belong toCM

2 , and so on. LetL′ be the graph
Laplacian ofG′ andP (G/πF ) ∈ R

n×r be the characteristic
matrix of G/πF . Recalling Definition 4, in this case we have

P (G/πF ) =





E1

0
0
...
0

0
E2

0
...
0

· · ·

0
0
...
0

Es




(9)

where Ei ∈ R
ri×1 is a vector with ones in each position.

Now, sinceA′ = −L′
f is symmetric it can be rewritten as a

block matrix:

A′ =





A′
11 A′

12 · · · A′
1,s

A′
21 A′

22 · · · A′
2,s

...
. . .

...
A′

s,1 . . . . . . A′
s,s




, (10)

where each diagonal submatrixA′
ii ∈ R

ri×ri represents the
set CM

i , and each other submatrixAij ∈ R
ri×rj represents

the connections between nodes belonging to setCM
i and

CM
j . From Definition 2, for each submatrixA′

ij , we have
rj∑

k=1

ai⋆k =

rj∑

k=1

aj⋆k ∀ i⋆, j⋆ ∈ CM
i . (11)

Moreover,B′ = −L′
fl has always the form

B′ =





0
...
0
E




(12)

with E column vectors of ones withl elements, wherel
denotes the number of the neighbors of the leader. The
controllability matrix can thus be recursively calculatedas

C =
[

B′ A′ · B′ A′ · A′B′ · · · A′ · A′(n−2)B′
]
,

and, sinceA′ is as in (10) with condition (11) andB′ is as
in (12), it becomes

C =




0 · · · Ĉ1n

0
. . .

...
E · · · Ĉsn



 Ĉij = fijEi

fij ∈ R
(13)



So the range space ofC (13) is such that

R(C) = span










E1

0
0
...
0









0
E2

0
...
0




· · ·





0
0
...
0
Es










which corresponds to the spanning set of the characteristic
vectors ofπF , which proves the proposition.

Corollary 1: The dimension of the controllable subspace
of the networkG is equal to the cardinality ofπF of its LEP.

Proof: The range space ofC is equal to the span-
ning set of the characteristic vectors ofπF . It follows that
dim(R(C)), is equal to the number of the columns of its
characteristic matrix, i.e. the number of sets ofπF .

Corollary 2: Agents of the network belonging to each set
CM

i of πF starting from the same point will move together,
i.e. ∀ t > 0,

x1(0) = · · · = xr1(0)
...

xn−rs
(0) = · · · = xn(0)





⇒






x1(t) = · · · = xr1(t)
...

xn−rs
(t) = · · · = xn(t)

Proof: A possibile choice forR(C)⊥ is to take vectors
with column sums to zero and with blocksPi ∈ R

ri×(ri−1)

in the position associate to each blockEi of R(C), such that

Pi =

[
Iri−1

−1T

]

ri×(ri−1)

.

In other words we have thatR(C)⊥ =
⋃s

i=1 Ri where

R1 = span










E⊥
11

0
...
0




,





E⊥
12

0
...
0




, · · ·





E⊥
1r1−1

0
...
0










R2 = span










0
E⊥

21
...
0




,





0
E⊥

22
...
0




, · · ·





0
E⊥

1r2−1
...
0










and so on, where

E⊥
i1 =





P
0
...
0




, E⊥

i2 =





0
P
...
0




, · · ·

with P ∈ R
2×1 s.t. P =

[
1
−1

]
.

It follows that for every blockEi, i.e. for every setCM
i , we

have,∀t > 0

x1(0) = · · · = xr1(0)
...

xn−rs
(0) = · · · = xn(0)





⇒






x1(t) = · · · = xr1(t)
...

xn−rs
(t) = · · · = xn(t)

which proves the corollary.

VI. A PPROXIMATE BISIMULATION THROUGH

EQUITABLE PARTITION GRAPH

A common theme in the theory of distributed processes
and in systems and control theory is to characterize systems
which are “externally equivalent”. The intuitive idea is that
we only want to distinguish between two systems if the
distinction can be detected by an external system interacting
with these systems. This is a fundamental notion in design,
allowing us to switch between externally equivalent repre-
sentations of the same system and to reduce subsystems to
externally equivalent but simpler subsystems.

A crucial notion in this sense is the concept of bisimu-
lation. The notion of bisimulation, introduced in [17], and
which has been further developed for example in [18], [19],
[20], is one such formal notion of abstraction that has been
used for reducing the complexity of finite state systems
and expresses when a subprocess can be considered to be
externally equivalent to another (hopefully simpler) process.

Bisimulation is a concept of equivalence that has become
a useful tool in the analysis of concurrent processes. It
also reflects classical notions in systems and control theory
such that state - space equivalence of dynamical systems,
and especially the reduction of a dynamical system to an
equivalent system with minimal state - space dimension.

In the following we apply concepts of approximate
bisimulations to multi agent systems. We aim to find a
subgraph of the original graph that we can use to move all
the agents belonging to the network, and we aim to give
a graphic and immediate interpretation to this one using
equitable partitions. Indeed, since the uncontrollable part of
the system is always asymptotically stable, we can simplify
the original network with one which corresponds exactly to
the controllable part of the network. In order to move all the
agents of the network, it is possible to control this smaller
entity and ignoring the uncontrollable part. Moreover, we
will prove that this controllable subgraph can be found by
investigating the network through equitable partitions.

Consider the controllability decomposition (5,6) with

T =
[
Tc Tuc

]
=

[
T 1

c T 2
c · · · T s

c Tuc

]
, (14)

T −1 =

[
T invc

T invuc

]
=





T 1invc

...
T sinvc

T invuc




, (15)

where Tc denote the firsts = dim(R(C)) columns ofT ,
andT invc the firsts rows of T −1.
Therefore

Āc = T invc A Tc, B̄c = T invc B, (16)

which allows us to state the following lemma.

Lemma 1:Let G be a LS2L network, with dynamics
described by (3), and letπM be its LEP.T invc (15) is such
that

T iinvc =
(T i

c )T

|CM
i |

. (17)



Proof: T −1 = T inv = (T T T )−1 T T with
T =

[
Tc Tuc

]
and, as we proved in Proposition 2,

Tc correspond to the characteristic matrix ofπF . SinceTc

andTuc are orthonormal, the matrixT ⋆ = (T T T ) is such
that:

T ⋆ =

[
T T

c Tc 0

0 T T
uc Tuc

]
=

[
T ⋆

11 0
0 T ⋆

22

]
,

whereT ⋆
11 ∈ R

s×s is a diagonal matrix s.t.[T ⋆
11]ii = |CM

i |
as shown in [16], andT ⋆

22 ∈ R
(n−s)×(n−s).

T ⋆ is a diagonal block matrix and, its inverse can be easily
evaluated:

(T ⋆)−1 =

[
(T T

c Tc)
−1 0

0 (T T
uc Tuc)

−1

]
,

i.e.

(T ⋆)−1 =





1
|CM

1 |
0 0 0 0 0

0
. . . 0 0 0 0

0 0 1
|CM

s |
0 0 0

0 0 0 (T T
uc Tuc)

−1




.

It follows that

T −1 = (T ⋆)−1

[
T T

c

T T
uc

]
=





(T 1
c )T

|CM
1 |

...
(T s

c )T

|CM
s |

T invuc




. (18)

Hence

T iinvc =
(T i

c )T

|CM
i |

, (19)

which proves the lemma.

Theorem 1 (Controllable Subspace):Let G be a LS2L
network with dynamics (3), and letπM be its LEP. The
controllable subspace ofG corresponds to the quotient graph
G/πM .

Proof: It is well known that L ∈ R(n+1)×(n+1)

is such thatL = D −H, where D is the diagonal de-
gree matrix and H is the adjacency matrix. Hence
A = −Lf = −(Df −Hf ), whereDf and Hf are respec-
tively obtained by taking the firstn rows and columns ofD
andH. We have

Ā = −(D̄f − H̄f ) where






D̄f = T −1Df T

H̄f = T −1Hf T

and the matrixĀc in (16) can be calculated as

Āc = −(D̄fc − H̄fc), (20)

where
D̄fc = T invcDf Tc (21)

H̄fc = T invcHf Tc. (22)

Since Tc is equal to the characteristic matrix ofπF , and
T invc = (T T

c Tc)
−1T T

c , (22) corresponds to the adjacency

matrix of the quotient graphHf (G/πF ) (Lemma 9.3.1 in
[16]). Moreover, since the degree of nodes belonging to the
same setCM

i is equal, andT invc satisfies (17),D̄fc is a
diagonal matrix whose diagonal entries represent the degree
of nodes belonging to each setCM

i . It follows that Āc in
(20) corresponds to−Lf (G/πM ).

Furthermore, withB as in (12), the decomposition (16) is
such that each entrȳbi of the matrixB̄c satisfies:

b̄i =
P

ri+r(i+1)
k=ri

bi

|CM
i

|
i.e. b̄i =






1 if CM
i is connected

to the leader
0 otherwise.

If we defineX as the number of sets|CM
i | connected with

the leader, we can conclude that the matrix
[

−Āc −B̄c

−B̄T
c X

]
(23)

corresponds exactly toL(G/πM ), which proves the theorem.

VII. A S IMULATION STUDY
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9

L

(a)

1’ 2’ 3’ L

(b)

Fig. 1. The graph of the network and the quotient graph corresponding to
controllable part (b).

As an application of the proposed method, consider a net-
work consisting of9 followers and one leader. As usual, lead-
ers and followers differ in that leaders move autonomously
and “herd” the followers, which move using the consensus
protocol. Assume moreover that the followers are layed out
in a grid, as in Fig. 1(a). Since such structure is a LS2L
network, it is not completely controllable, and for this reason
we cannot move it from any initial point to any arbitrarily
point.

Consider now a translation of the network: due to the fact
that the system is not completely controllable, this movement
is not feasible. In Fig. 2(a), 2(b), 2(c), we report some
steps of a translation process of the entire network, and in
Fig. 2(d), 2(e), 2(f), we report the same steps of the same
translation, but applied to the quotient graph shown in Fig.
1(b).

We suppose that an external unit tells the leader the trajec-
tory to follow, or that the leader has planning capabilitiesin
order to solve the planning problem. Starting from the initial
situation of Fig. 2(a), leader moves alongx axis dragging
followers, whose disposition (Fig. 2(b), 2(c)) asymptotically
converge to the controllable quotient graph (Fig. 2(e), 2(f)).

This result emphasize the importance of a graph theoretic
characterization of the controllable part of the network,
which enables the designer to fucus directly on the smaller,
approximate bisimulation of the original graph, when design-
ing control laws.
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Fig. 2. Translation process of the entire network (a, b, c), and of its quotient graph (d, e, f).

VIII. C ONCLUSIONS

The problem of controllability of a group of autonomous
agents has been considered. A leader-follower linear consen-
sus network has been used to model the interactions among
the nodes. It has been shown that when the network is not
completely controllable, we can give a graphic theoretic
interpretation to the controllability subspace, and that it
is possible to construct a smaller completely controllable
network that is controllable-equivalent to the original one.
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