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Abstract: In this paper, we study the effect that set-valued sensors have on coordination
algorithms. In particular, we investigate the two-agent rendezvous problem with severely limited
sensing. We characterize conditions under which a agent can locate a stationary target when
the sensing modality is probabilistic and set-valued. We generalize this to the case where a
mobile agent is locating the target and show that the location of the stationary agent can be
approximated up to a set of measure zero.

1. INTRODUCTION

A typical example of a large scale multi-agent network is
a naval surveillance network comprised of ground, under-
water, surface and aerial unmanned vehicles which are re-
quired to coordinate to achieve different tasks like reaching
agreements, achieving formations and area coverage. These
tasks have been extensively studied by the multi-agent
community (e.g Tanner et al. [2007], McNew et al. [2007],
Lawton et al. [2003], Shucker et al. [2006] and Howard
et al. [2002]).

Traditional coordination algorithms involve manipulation
of states defined at different nodes in the network and
requires measurements which would allow individuals in
the network to estimate the state. For example, consider
the problem where a collection of l agents with states
(x1, x2 . . . xl) (which can be positions, orientation etc)
are trying to reach an agreement. Collecting the states
(x1, x2 . . . xl) into a single state vector x ∈ Rl, agreement
can be achieved by executing the agreement protocol given
by:

ẋ = −Lx (1)

where L is the graph Laplacian for some interaction
graph G which captures how the agents influence each
other. The agreement protocol forces the state vector x to
converge to the average of the initial state vector x(0). This
coordination algorithm has been extensively analyzed by
the multi-agent controls community (eg Olfati-Saber et al.
[2007], Jadbabaie et al. [2003]). To execute the agreement
protocol, the most important piece of data required by
an agent i is the relative state displacement (xi − xj)
with respect to its neighbour j. It is, in general, assumed
that every agent in the network is able to obtain this
information via communication with neighbouring agents
or using sensor measurements.

But as we push to reduce the size of robots to micro and
nanoscales, it is not possible to equip them with high-
precision sensors due to size and weight constraints. One
natural consequence is that sensors operating at such a
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scale are less reliable and tend to drift even in short time
scales as they are highly susceptible to noise (see Dahlin
[2012]). As a result, repeated measurements under the
same conditions produce different results. The amount
of reliable information that can be extracted from such
measurements are severely limited. For instance, an agent
located in an environment W ⊂ Rk might be able to
locate a subset of W in which its neighbour might be
residing instead of a single point p ∈ Rk relative to its own
location. This paper investigates coordination algorithms
in the context of such limited sensing.

This work is also motiviated by the need to understand
the minimum amount of information required to achieve
specific tasks so that we can equip the agents with sim-
plest and cheapest sensors which will allow a multiagent
network(of any scale) to function properly. We model the
uncertainity associated with such limited sensing hardware
by developing a set representation of potential measure-
ments that can be made and develop motion strategies
that operate on these sets instead of points. The impact of
limited sensing modalities has already been investigated
in the context of robot localization problem in O’Kane
and LaValle [2005], Erickson et al. [2008] and O’Kane and
LaValle [2007].

As a first choice, we consider the two-agent rendezvous
which involves two agents trying to rendezvous at some
arbitrary point in the environment in which they are
deployed. One of them is equipped with no sensors and is
stationary and the other one is equipped with a set-valued
sensors which returns sets when the agent attempt to
make a measurement instead of scalar values like relative
displacement. A similarly themed work is Fagiolini et al.
[2011] which studies the impact of set-valued information
exchange on the consensus problem via set-valued differ-
ence equations. The key difference between our work and
theirs is that we focus on set-valued sensing and assume
that the agents involved cannot communicate with each
other.

The rest of the paper is organized as follows. In section
2,we describe set-valued sensors. In section 3, we study
characterize the conditions under which the agent would
be able to locate the other agent without moving. In



section 4, we devise a motion strategy and prove that the
strategy enables the agent to approximate the location of
the other agent upto a zero measure set. In section 5, we
repurpose the motion strategy devised in section 4 so that
it can be implemented in hardware. Section 6 provides
experimental results followed by the conclusion.

2. SET-VALUED SENSORS

Consider two agents, named S and T (searcher and target),
deployed in a compact and connected environment W ⊂
Rk. Agent S is equipped with a probabilistic set-valued
sensor and is capable of moving in any direction. The agent
is also aware of the topography of the environment and can
plan its path between any 2 points in the environment. We
would like to characterize the conditions under which the
searcher S can locate the stationary target T situated at
a unknown location xT based on the uncertain measure-
ments obtained from the sensor.

Since the environment W is a subset of Rk, it is possible
to assign volumes to subsets of W by using the standard
Lebesgue measure defined on Rk.

Definition 1. Let (W,ΣW , λ) be a measure space, where
ΣW denotes the Lebesgue measurable sets contained in W
and λ is the normalized Lebesgue measure i.e (λ(W ) = 1).

The sensor model is defined as follows. The potential
measurements which can be made by the searcher S is
a subset of the measurable sets (those which contain the
target position xT ) given by

M = {M | xT ∈M,M ∈ ΣW }. (2)

A measurement made by the searcher S is simply a ele-
ment of M sampled according to an arbitrary probability
distribution imposed on M (see Fig 1). It is important
to note that the searcher S has no control over this dis-
tribution. The probability distribution on M is chosen
to reflect the performance and efficiency of the sensor.
A measurement made with a good sensor would return
a small open ball centered at xT with high probability.
One example of a ”poor” sensor would be a camera. In
that case, the searcher S would be able to determine that
the target T is not in the immediate vicinity, which can be
described by a set U , by processing the image returned by
the camera. Then it can be inferred that the target lies in
the complement of U . We can also consider sensors which
can detect the general direction in which the target lies
and thus allow us to determine a half-space in which the
target lies.

In the following sections, we characterize the properties
which the probability distribution on M must possess in
order for the searcher S to be able to locate the target
without moving. We also provide a motion strategy which
can be employed by the searcher to recover the location of
the target independent of the probability distribution on
M.

3. STATIONARY SEARCHER, STATIONARY
TARGET

In this section, we assume that the searcher S and target T
are located at xS and xT and do not change their locations.
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Fig. 1. S is the searcher and T is the target. The polygon
represents the world W and the colored set represents
the measurement

The stationary agent, stationary target is worthy of study
as detecting another agent is usually considered to be a
passive operation. Therefore, it is important to determine
whether the searcher can solve the problem without taking
any action. Also, making repeated measurements is a
cheaper operation than moving around and therefore much
preferable.

Let {Mi}∞i=1 denote an infinite sequence of measurements
made by the searcher S. The interpretation is that the
measurement Mn is made before the measurement Mn+1.
After making n measurements, S can improve its esti-
mate of the location of the target T by simply combining
its previous measurements by taking intersections. Define
Cn =

⋂n
i=1Mi. The set Cn can be interpreted as the

smallest region of the map Wm which contains the agent
T given measurements M1,M2, ...Mn. The set Cn is also
measurable for every n as it is constructed by taking count-
able intersections of measurable sets. Then, the volume of
the set Cn given by λ(Cn) can be regarded as a measure
of uncertainity. Note that Ci+1 is not necessarily a proper
subset of Ci as it is possible to make measurements which
do not yield any new information (i.e Ci ⊆Mi+1). The fol-
lowing properties of the sequence (λ(C1), λ(C2), λ(C3)....)
can be quickly established.

1) λ(Ci) ≤ 1 (As λ(W ) = 1 and Ci ⊂W )
2) λ(Ci) ≥ 0 (Non-negativity of measure)
3) λ(Ci+1) ≤ λ(Ci) (Follows from the recursive relation
Cn+1 = Cn ∩Mn+1)

The third point can be interpreted as ”The uncertainity
associated with the position of the target T can only
decrease”. More compactly, the sequence (λ(C1), λ(C2), ...)
is a monotone non-increasing sequence bounded below by 0
and bounded above by 1. If the sequence (λ(C1), λ(C2), ...)
converges to 0, then it means that the searcher S can
approximate the position xT of the agent T upto a set
of measure 0.

We can identify the conditions under which the sequence
(λ(C1), λ(C2), ...) converges to 0 by studying the set of
monotone non-increasing sequences which are bounded
above by 1 and below by 0. This in turn can be used to
determine conditions on the distribution on set of potential
measurements M.



Let the set Λ denote the set of all monotone infinite non-
increasing sequences which are bounded below by 0 and
bounded above by 1. Every element of the set Λ can be
thought of as a potential trajectory taken by the sequence
of measurements {λ(Cn)}.
Definition 2. Let ω = (ω1, ω2, ...) ∈ Λ. Then the nth
projection Vn : Λ→ [0, 1] is defined as Vn(ω) = ωn.

Let F denotes the smallest σ-algebra on Λ such that Vi
is a random variable for every i. Let P : F → [0, 1]
represent a probability measure on F which is chosen as
to represent the distribution from which the measurements
are drawn. Then (Λ,F , P ) represents a probability space.
Note that Vi+1(ω) ≤ Vi(ω) for every ω and i. It follows
that ∆Vi(ω) = Vi+1(ω) − Vi(ω) ≤ 0. Let E denote
the expectation functional associated with (Λ,F , P ). The
indicator function is 1Λ(ω) : Λ → [0, 1] is such that
1Λ(ω) = 1 and its expectation is E(1Λ) = P (Λ) = 1. Since
Vi(ω) ≤ 1Λ(ω), E(Vi) ≤ E(1Λ) = 1.

Definition 3. Let ω = (ω1, ω2, ...) ∈ Λ. Let Vn denote the
nth projection. Then V∗(ω) = limn→∞ Vn(ω).

V∗ is well defined as V∗(ω) is the limit of of the sequence
ω which always exist. V∗ is also a random variable as it
is the pointwise limit of the random variables Vi. If we
interpret Vi(ω) as the amount of uncertainity remaining
after the ith measurement, Then V∗(ω) can be interpreted
as the total uncertainity associated with the position of
the target after all the measurements have been made.
The following theorem the provides us with the conditions
under which this uncertainity goes to 0.

Theorem 1. Let Vn denote the nth projection. Then V∗ =
0 almost surely if and only if limn→∞E(Vn) = 0.

Proof.

Let 1Λ denote the indicator function for Λ.

Assume limn→∞ Vn = V∗ = 0 almost surely.
Since limn→∞ Vn = V∗ and |Vi| ≤ 1Λ , by the dominated
convergence theorem, we have limn→∞E(Vn) = E(V∗) = 0
as V∗ = 0 almost surely.

Now, assume limn→∞E(Vn) = 0.
Since |Vi| ≤ 1Λ for all i and V∗(ω) = limn→∞ Vi(ω),
by the dominated convergence theorem it follows that
E(V∗) = limn→∞E(Vn) = 0.
Then, we can express

E(V∗) =

∫
Λ

V∗dP =

∫
V∗=0

V∗dP +

∫
V∗>0

V∗dP = 0. (3)

Then
∫
V∗>0

V∗dP = 0 which is true only if P (V∗ > 0) = 0.

Therefore V∗ = 0 almost surely.
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Suppose the P is such that the above theorem holds,then it
follows that P (V∗ = 0) = P ({ω | limn→∞ ωn = 0 and ω ∈
Λ}) = 1. This means almost every sequence ω in Λ
converges to 0 provided limn→∞E(Vn) = 0.

Relating the sequences in Λ to sequences of measurements
{λ(Cn)}, this implies that almost every seqeunce of mea-
surement allows us to approximate the location of the
target T upto a set of measure 0. This does not necessarily
imply that we would be able to recover the location T as

Fig. 2. The label S identifies the location of the searcher.
The colored rectangles which contain T represent the
measurements made by the searcher. It can be seen
that the intersection of the rectangles forms a line
which has a Lebesgue measure of 0

measure zero sets are not necessarily singletons (for e.g
an infinite set of isolated points has measure 0). Things
can be improved a little bit by imposing more restrictions
on the set M. For instance, we could require that all the
sets in M be convex. This improves things as

⋂∞
i=1Mi,

for Mi ∈ M will now be convex and would have measure
zero. But this still does not let us figure out T as the result
of our measurements could be a line(e.g see Fig 2) which
again has a zero measure.

Also, since we have no control over the distribution itself,
there is no gurantee that the above theorem will hold. But
the above analysis is done under the assumption that the
agent located at xS does not move during the measurement
process. But since the measurements drawn from M are
not influenced by the agent’s location, there is nothing
to be gained from mobility. This observation suggests
a modification to the above analysis. If we allow the
position of the agent to influence potential measurements,
can we improve the above situation and devise a motion
strategy for locating the target which is independent of
the probability distribution? The question is answered in
the affirmative in the following section.

4. MOVING SEARCHER, STATIONARY TARGET

In this section, we again assume that the target T is
located at xT . Now we assume that the searcher S is
allowed to move and makes measurements sequentially
from different positions and we let xi denote the position
of the agent when it makes the ith measurement. Let
(W,ΣW , λ) be the measure space given by Definition 1.
We also assume that W is a convex set.

Let the setHx denote the set of all closed half-spaces which
contains x in their boundary. The set

Mx = {B | B = S ∩Hx, T ∈ Hx, Hx ∈ Hx} (4)

denotes the set of all potential measurements which can
be made by an agent located at x ∈ S. Every set in Mx

is measurable as they are closed because Σs contains all
the closed sets and is convex as S and closed halfspaces
are convex. Since the measurements made by agent are
forced to contain the agent in its boundary, the agent
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Fig. 3. The dotted lines represent the path taken by
the searcher S. The points where the dotted lines
meet the solid lines represent the position from which
measurements where made. The colored set again
represents the intersection of the measurements made
upto that point

can influence the measurements by moving around(see Fig
3). We make the following definition which allows us to
prove an lemma regarding the influence of position on
uncertainity.

Definition 4. Let X ⊂ S be a set with non-empty
interior. A point x ∈ X is said to be of at least depth
d in X if there exists a open ball Br(x) ⊂ X such that
r ≥ d.

One way in which the searcher S can control uncertainty
is by being able to reduce uncertainty ”locally” by driving
to different depths as shown by the lemma given below.

Lemma 1. Let C be a measurable set which contains the
target T . Let x ∈ C be a point of at least depth d in C.
Then for every M ∈Mx, the following holds

λ(M ∩ C) ≤ λ(C)− 1
2gd

n (5)

where g is the Lebesgue measure of the unit ball and
n is the dimension of the euclidean space of which the
environemnt W is a subset.

Proof. Let g = λ(B0(1)). Let M ∈ Mx. Since x is of at
least depth d in C, Bd(x) ⊂ C. Let Ca = C \ Bd(x) and
Cb = Bd(x). So C = Ca ∪ Cb and Ca ∩ Cb = ∅ where
∅ is the empty set. Note that λ(Ca) = λ(C) − gdn and
λ(Cb) = gdn. Then λ(C∩M) = λ(Ca∩M)+λ(Cb∩M) as
Ca and Cb are disjoint. Since every half plane centered at
x bisects every open ball centered at x, λ(Cb∩M) = 1

2gd
n.

We note that λ(Ca∩M) ≤ λ(Ca) = λ(C)−gdn and obtain
the required inequality as follows:

λ(C ∩M) ≤ λ(C)− gdn + 1
2gd

n = λ(C)− 1
2gd

n (6)
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The above lemma states that if the searcher S drives to a
depth d into a set C and makes a measurement from that
point, then it is guranteed to reduce the uncertainty atleast
by 1

2gd
n. We can use this to devise a motion strategy.

Definition 5. Let X ⊂ W be a convex set. Then the
depth of X is dX = sup{r | Br(x) ⊂ X,x ∈ X}

Note that if dX = 0 for a set X ⊂ W , λ(X) = 0. This
follows from the observation that if dX = 0, then X has

empty interior and therefore X = ∂X. Then it follows
from the fact that the boundary of a bounded convex set
has zero measure that λ(X) = 0.

Definition 6. Let C0 = W denote the searcher S’s initial
estimate of T before it makes any measurements. The
motion strategy for the searcher S is as follows. Let
α ∈ [0, 1]. Let xi ∈ Ci be of at least depth αdCi in the set
Ci (i.e the agent moves to a fraction α of the depth dCi

of its current estimate Ci to make its next measurement)
and let Ci+1 = Ci ∩M where M ∈Mxi .

Now, the claim is that dCi
converges to 0.

Theorem 2. Let Ci, xi and α be as defined by Definition
6 . Then limn→∞dCn = 0.

Proof. We begin by noting that since Ci+1 ⊆ Ci, dCi+1
≤

dCi
as shrinking the set reduces its depth. Then {dCi

}∞i=1
is a monotone non-increasing sequence and therefore con-
verges to something.
Now suppose limn→∞dCn

= c > 0 and obtain a contra-
diction as follows.
Since c ≤ dCi

for every i, αc ≤ αdCi
for every i. Since xi

is of depth αdCi
in Ci for every i, it is also of depth αc

in Ci for every i. We show that this contradicts the non-
negativity of the measure λ by an inductive argument.
We know that λ(C1) ≤ λ(C0)− 1

2gα
ncn by Lemma 1.

Now assume λ(Ck) ≤ λ(C0)− n
2 gα

ncn.

Then λ(Ck+1) ≤ λ(Ck)− 1
2gα

ncn (again by Lemma 1).
Combining the above inequality with the assumption made
in the inductive step, we obtain λ(Ck+1) ≤ λ(C0) −
k+1

2 gαncn. Since C0 = S, λ(C0) = 1. Then λ(Ck) ≤ 1 −
k
2gα

ncn. When k > 2
gαncn , we obtain λ(Ck) < 0 which

contradicts the non-negativity of the measure λ. Therefore
we can conclude that limn→∞dCn

= 0.
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We can deduce a few facts about C∞ =
⋂∞
i=1 Ci, which

denotes the best estimate of the location of the target
T that can be made by the searcher S, from the above
theorem. Since C∞ ⊆ Ci, dC∞ ≤ inf{dCi | i ∈ N} = 0.
Since the depth of a set cannot be less than 0, we obtain
dC∞ = 0 implying that C∞ has a empty interior. Also
Ci is convex for every i as M ∈ Mxi is convex for every
i. Therefore C∞ is convex. But since C∞ has a empty
interior ∂(C∞) = C∞ and boundary of any convex set has
a measure of 0. Therefore λ(C∞) = 0. This implies that
the above motion strategy allows us to approximate the
location of the target T upto a set of measure 0.

5. ALTERNATE STRATEGY

The motion strategy devised in the previous section as-
sumes that the agent is able to compute the depth dCi

of the set Ci (in order to calculate αCi). This computa-
tion is equivalent to computing the chebychev center of
a polytope and is computationally intensive. This can be
circumvented as described below by making a relatively
reasonable assumption. We assume that given a measur-
able set C and small positive number r ∈ R, the searcher
S would be able to find a point p in C such that p is of at
least depth r in C (assuming such a point exists).



If the choice of r is small relative dC , a simple strategy
to find such points would be to sample a huge number
of points from a uniform distribution imposed on C. Let
the set Xr = {p | p is at least of depth r in C}. Assuming
uniform distribution on C, the probability that the point

p of depth r in C is given by λ(Xr)
λ(C) . If we choose r = 0, the

probability λ(Xr)
λ(C) = 1 as every Xr is equal to the interior

of C. Similarly, it is equal to 0, when r = dC and varies
continuously when r ∈ (0, dC). So for a sufficiently small

non-zero r, the probability λ(Xr)
λ(C) can be made as close to

1 as possible which ensures that a large fraction of the
points generated by sampling is of at least depth r in C.

The above observation ensures that sampling is a reason-
able strategy to find points of at least depth r. This in
turn can be used to devise a new motion strategy for the
searcher S. Let C0 = W and choose r > 0. C0 denotes
the initial set-valued estimate of the target location xT .
The searcher S then samples a large number of points

from the C0. If r is small enough, the probability λ(Xr)
λ(C)

would be close to 1 thus ensuring that sampling produces
a point p of at least depth r in C0. Then the searcher
S drives to the sampled point p of at depth r in C0 and
makes a measurement M1 and constructs the new estimate

C1 = C0 ∩ M1. Since dC1
≤ dC0

, the probability λ(Xr)
λ(C1)

would be lesser than the probability λ(Xr)
λ(C0) . In general,

the probability λ(Xr)
λ(Cn) would approach 0 as n increases.

In fact, it attains 0 after finitely many measurements.
This is because C0 had unit volume and infinitely many
measurements from depth r would force the measure λ(Ci)
to become negative which is not possible. So after finitely
many measurements, dCn ≤ r and sampling would fail. At
this point the searcher reduces r to r

2 and starts making
measurements from points of depth r

2 . Repeating this pro-
cess, we can see that dCi would approach 0 as r approaches
0. This allows us to implement a search strategy which
does not involve the computation of dCi .

6. HARDWARE IMPLEMENTATION

We implement the motion strategy devised in the previous
sections on a Khepera III robot in a lab environent. The
position of the robot is tracked by a Opti-track motion
capture system. The environment W is a rectangle whose
height and width is approximately 5 meters and 3 meters
respectively. The target T is located at approximately 1.2
metres 3.5 metres relative to the lower right corner of the
environment.

The inital depth r from which the robot will make its mea-
surement is set to 0.5. The minimum depth which is used
to determine convergence is rmin = 0.0625. The convex
polygon in which the target T is located is represented by
the vertices of the polygon ordered in a clockwise manner.
Every point in a convex polygon is a convex combintation
of its vertices (i.e of the form

∑
i αivi where vi represents

the ith vertex and
∑
i αi = 1). This allows us the robot to

sample from the polygon by sampling a from a n-simplex
where n denotes the number of vertices. The robot then
makes a measurement by sampling points and checking
whether the depth of the point is greater than r and then

drives to that point to make a measurement. If sampling
fails, the robot reduces r to r

2 and tries to sample again.
This process terminates when r ≤ rmin. Fig 4 shows this
algorithm at different stages of its execution.

(a) After a single measurement

(b) The blue polygon located in the inte-
rior of the rectangle represents the uncer-
tainty associated with the location of the
target after 3 measurements

(c) After 5 measurements (target point
obscured by the Khepera)

(d) Converges to a set of depth less than
0.0625 after 10 measurements

Fig. 4. The Khepera III robot makes a sequence of mea-
surements from the circled red dots and finally con-
verges to the stationary target represented by the
circled black dot. The blue polygons located in the
interior of the rectangle represent the region in which
the target is located.



7. CONCLUSION

In order to study the impact of limited sensing modal-
ities on coordination algorithms, we have developed a
probabilistic set valued sensor model and characterized
conditions under which the searcher S can locate the target
using this sensor. We have also developed a motion strat-
egy which allows us to combat the uncertainty inherent
in the sensor model and achieve two-agent rendezvous.
Our results show that the motion strategy which has been
devised allows the searcher to locate the target upto a set
of arbitrary small measure in finite time.
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