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Abstract

This paper concerns a particular aspect of the optimal control problem for switched systems that

change modes whenever the state intersects certain switching surfaces. These surfaces are assumed

to be parameterized by a finite dimensional switching parameter, and the optimization problem we

consider is that of minimizing a given cost-functional with respect to the switching parameter under

the assumption that the initial state of the system is not a priori known. We approach this problem

from two different vantage points by first minimizing the worst possible cost over the given set of

initial states using results from min-max optimization. The second approach is based on a sensitivity

analysis in which variational arguments give the derivative of the switching parameters with respect

to the initial conditions.

1 Introduction

Over the last couple of decades, a lot of effort has been directed towards optimal control of hybrid
systems, e.g. [9, 5, 16, 17, 18, 24, 12, 2]. Hybrid systems are complex systems that are characterized by
discrete logical decision making at the highest level and continuous variable dynamics at the lowest level.
Examples where such systems arise include situations where a control module has to switch its attention
among a number of subsystems [19, 21, 23], or collect data sequentially from a number of sensory sources
[10, 13, 18].

The type of hybrid systems under consideration in this paper belongs to the class of switched au-
tonomous systems, where the continuous-time control variable is absent and the continuous-time dynam-
ics change at discrete times (switching-times). For these, it is possible to derive gradient expressions
for the cost functional with respect to the switching times when the initial state is fixed. In particular,
[14] presented a gradient-based algorithm that finds optimal switching-times, dictating when to switch
between a given set of modes, for the case when the switching-times are controlled directly. Furthermore,
[6] considered the case when a switch between two different modes occurs when the state trajectory
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intersects a switching surface, defined by g(x(t), a) = 0, where x(t) ∈ R
n is the state of the system at

time t, and a parameterizes the switching surface. Reference [6] can thus be thought of as the starting
point for this paper, as we consider a similar problem, but instead of optimizing with respect to a given
fixed initial condition x0 ∈ R

n, we will assume that the initial state can be anywhere within a given
set S ⊂ R

n. This problem arose, for example, in the context of a recent DARPA sponsored robotics
competition (LAGR - Learning Applied to Ground Robots), where an autonomous mobile robot was to
navigate an unknown, outdoor environment from an initial set (the robot could start anywhere in the
set) to a given target destination [22].

In order to find a good value of the switching parameter a, independent of the starting point from S,
we will use the gradient formula presented in [6] and find a locally optimal a such that we will minimize
the worst possible cost for all trajectories starting in S. Hence, we have a min-max problem and the
results presented in this paper are based on the initial study found in [4].

An alternative view, initiated in [8], that will also be pursued in this paper is to assume that a switching
surface can be obtained by varying the initial conditions and then solving for the corresponding, varying
optimal switching times (and consequently switching states). In this manner, a sensitivity-based approach
can be exploited for obtaining suitable switching surfaces.

The outline of this paper is as follows: In Section 2, the problem at hand is introduced together with
some previous results relating to the gradient formula. Section 3 presents our solution using a min-max
strategy. This is followed by a sensitivity analysis in Section 4 together with a discussion about the
transition from sensitivities to switching surfaces. The conclusions are given in Section 5.

2 Switching Parameter Optimization

The type of systems under consideration in this paper are of the form

ẋ(t) = fi(x(t)), t ∈ [τi−1, τi), i ∈ {1, . . . , N + 1}, x ∈ R
n, (1)

where we assume that the system switches N times between N +1 different dynamical regimes (or modal
functions) at times τi, i = 1, . . . , N over the time window [0, T ]. (In the formulation above, we assume
that τ0 = 0 and τN+1 = T , i.e. the final time.) We moreover assume that the switching times are not
controlled directly. Instead, a switch occurs whenever the state trajectory intersects a switching surface
and we assume that the geometry and dynamics of the system are such that the system does in fact
undergo exactly N switches on the interval [0, T ] and that the intersections of the switching surfaces
occur in a non-tangential manner. This problem was initially considered in [7] for a fixed initial state.

ẋ = fi(x(t))

ẋ = fi+1(x(t))

g(x, a) = 0

a

Figure 1: Mode switching occurs when the state trajectory intersects a switching surface. In this case,
the switching surface is a circle parameterized by the radius a.

In this paper, we assume that the surfaces are defined by the solutions of parameterized equations
from R

n to R. We denote this parameter by a and suppose that a ∈ R
k for some integer k ≥ 1, as shown

in Figure 1. For every switching surface gj (denoting the surface that correposnds to the jth switch),
we let gj : R

n × R
k → R be a continuously differentiable function. For a given fixed value of a ∈ R

k,
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denoted here by aj , we thus let the switching surface be defined by the solution points x of the equation
gj(x, aj) = 0 as illustrated in Figure 1. (Note that under mild assumption, the switching surface is a
smooth (n− 1) dimensional manifold in R

n, and aj can be viewed as a control parameter of the surface.)
In order to minimize a cost function of the form

J =

∫ T

0

L(x(t))dt, (2)

where L : R
n → R, we need to determine the optimal switching surface parameters since the state

trajectory depends on them. To this end, [7] presented an expression for the gradient of the cost functional
with respect to the switching surface parameters. This gradient was presented under the assumption
that the functions fi, gi, i = 1, . . . , N + 1, and L where continuously differentiable with respect to all its
arguments. Furthermore, it was assumed that fi i = 1, . . . , N + 1, was uniformly Lipschitz.

In order to compute the derivative of the cost with respect to the switching parameters, we define
xi = x(τi), and the terms Ri and Li by

Ri = fi(xi) − fi+1(xi), (3)

and

Li =
∂gi

∂x
(xi, ai)fi(xi), (4)

where we recognize Li as the Lie derivative of gi along the direction of fi, which we, in this paper, assume
to be nonzero, i.e. that the switching surfaces are always intersected in a non-tangential manner.

Based on this notation, in reference [7] the following expression for the derivative dJ/dai was derived.

Proposition 2.1 [7] If, for all i = 1, . . . , N, Li 6= 0, the following equation is in force,

dJ

dai

= −
1

Li

p(τ+
i )Ri

∂gi

∂ai

(xi, ai), (5)

where the costate equation is given by

ṗ(t) = −
(

∂fi+1

∂x
(x(t))

)T

p(t) −
(

∂L
∂x

(x(t))
)T

;

t ∈ [τi, τi+1), i = 1, . . . , N, (6)

with terminal condition pT (τN+1) = 0 when the final time is fixed to τN+1 = T , and reset conditions

p(τ−
i ) = (I −

1

Li

Ri

∂gi

∂x
(xi, ai))

T p(τ+
i ), i = 1, . . . , N. (7)

3 Min-Max Optimization

Given a set of possible initial states S ⊂ R
n, a set of switching surfaces parameterized by some vector a,

and an instantaneous cost L, the total cost, starting at x0 ∈ S, is given by

Jx0
(a) =

∫ T

0

L(x(t))dt, a ∈ R
k, (8)

where, T is the fixed final time and subscript x0 indicates the implicit dependence on the initial condition.
With this notation, the optimization problem can be stated as follows: Given a set of initial states S and
a set of parameterized switching surfaces, find the surface parameter such that

max{Jx(a) | x ∈ S} (9)

is minimized.
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The theory of min-max optimization and consistent approximations [20] can be utilized in order to
implement and solve this problem. In particular, we will achieve this by choosing a sequence of sets of
initial states, {Xi}∞i=0. This sequence will satisfy the following three conditions: (1) Xi ⊂ S i = 1, 2 . . .;
(2) The cardinality of Xi is greater than the cardinality of Xi−1; (3) Every point in S will be arbitrarily
close to a point in Xi, as i goes to infinity. Choosing {Xi}

∞
i=0 in this way enables us to find the solution

to (9) by solving a sequence of optimization problems, each one with a different set of initial states.
For each Xi, we will find the optimal switching parameter a⋆

i that minimizes max{Jx(ai) | x ∈ Xi}
through a gradient descent algorithm. After we have found the optimal a⋆

i , we will solve max{Jx(ai+1) | x ∈
Xi+1} by initializing ai+1 to a⋆

i . This gives a good starting point for the gradient descent algorithm. For
each Xi we will moreover find the optimal a⋆

i by executing a gradient descent algorithm with Armijo step
size [1], under the assumption that Xi has N (i) elements, i.e. Xi = {x1, . . . , xN (i)} for some x1, . . . , xN (i)

in S ⊂ R
n.

The resulting algorithm is given by:

Algorithm 3.1 Gradient Projection Algorithm with Armijo Stepsize

Given: Two constants δ > 0, and ǫ > 0, and the set of initial states Xk = {x1, . . . , xN (k)} ⊂ S for
a given k ≥ 0.

Initialize: Choose a feasible initial guess for the switching surface parameter a.

Step I: Calculate the maximum cost for the given set of initial states, denoted

F (Xk, a) = max
x

{Jx(a) | x ∈ Xk}, (10)

where Jx is given by (8). Let I(Xk, a) denote the index set of active constraints, i.e.

I(Xk, a) = {j ∈ {1, . . . ,N (k)} | F (Xk, a) − Jxj
(a) < ǫ}. (11)

Calculate the generalized gradient

∂F (Xk, a) = conv{∇Jxj
(a) | j ∈ I(Xk, a))}, (12)

where conv denotes the convex hull. Find the point in ∂F (Xk, a) closest to the origin and denote
it by h. If ||h|| < δ then STOP. Else, goto Step II.

Step II: Calculate the step-length λ according to Armijo’s rule, i.e.

λ = max{z = βℓ | ℓ = 0, 1, 2, . . .}

F (Xk, a − zh) − F (Xk, a) ≤ −αz‖h‖2},

where α, β ∈ (0, 1) are the Armijo constants. Update a according to a = a − λh and go back to
Step I.

A few remarks concerning Algorithm 3.1 are due.

Remark 3.1 The index set of active constraints, I(Xk, a), is introduced in order to determine what
initial states in Xk we should take into consideration for a given a. If the index of an initial state is in
the index set, then the gradient of the cost associated with that initial state is current in the calculation
of the generalized gradient, ∂F (Xk, a). If ǫ = 0 in (11), i.e., we only optimize with respect to the initial
state corresponding to the maximal cost, it is conceivable that we can only take a very small descent step
since the index set changes when a changes.

Remark 3.2 In order to find the optimal a for a given set of initial states, we would have to set the
constants δ and ǫ to 0. However, doing this when we solve for a sequence of initial states, {Xk}∞k=0, would
not give any additional benefit, instead we only require that for each consecutive problem we will solve, δ
and ǫ will decrease, and in the limit when i → ∞, they will be zero.
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∇Jx2
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h

Figure 2: Calculation of h given four initial states and their respective gradients, where x1 through x3

are the active initial states. (Note here that the system evolves in R
2, with components x and y.)

Remark 3.3 Solving for h is a standard quadratic optimization problem over a convex set, and can be
solved using a variety of optimization algorithms.

In order to illustrate the calculation of h, a simple example is presented. Assume that we have four
different initial states, x1 through x4 in R

2. In Figure 2, their respective gradients are plotted and it is
assumed that x1 through x3 are active initial states for the given switching surface parameter a. The
shaded region in Figure 2 corresponds to the convex hull of the gradients of the active initial states, and
h is the closest vector in this set from the origin.

Now, having presented Algorithm 3.1 and the subsequent remarks, we are now in the position to
present the final Algorithm 3.2

Algorithm 3.2 Min-Max Optimization for Unknown Initial States:

Given: A sequence of initial sets {Xk}
∞
k=0 ∈ S ⊂ R

n, where Xk = {x1, . . . , xN (k)} and N (k) >
N (k − 1). Two positive sequences {ǫk}∞k=0 and {δk}∞k=0 such that in the limit when k → ∞, both
are 0.

Initialize: Set k = 0, pick a feasible initial guess for k0.

Step I: Use Algorithm 3.1 to optimize over a with δ = δk and ǫ = ǫk. Initialize a with ak−1 if
k 6= 0, and with a0 if k = 0.

Step II: Set ak to a given from Algorithm 3.1. Increase k by one, return to Step I.

We have thus obtained a descent algorithm that applies standard techniques from min-max opti-
mization for solving the optimal switching time problem when the initial state is confined to a set S of
possible initial conditions. The resulting switching surface parameters thus ensures that no matter where
the initial state actually is located in S, the performance of the system is reasonable.

4 Optimal Switching Times Parameterized by Initial Conditions

In the previous section, we presented an algorithm that minimized the worst-case performance over a set
of initial conditions. However, an additional view of this problem will be presented in this section, in which
we instead assume that the problem is to find the optimal switching surface itself rather than the optimal
surface parameterization. This problem can locally be addressed as an optimization problem involving
multiple initial conditions. In fact, by allowing the free switching times to vary as the initial state varies,
we obtain a sensitivity-like argument for characterizing a collection of locally optimal switching times,
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parameterized by x0 ∈ S rather than one single surface parameter, as was the case in this section. This
collection implicitly defines a switching surface, as will be seen in the following paragraphs. It should be
noted though that in this case, there is a direct correspondence between the initial conditions and the
switching surfaces, and what we in fact are looking for is this correspondence. However, as the problem
under consideration is that of a finite horizon problem, a potential problem with this approach that arises
from the finite time horizon is that we will not get a surface but rather a set. This can be remedied in
two distinctly different ways, namely a) assuming a particular shape on S such that it itself is a surface,
or more interesting and practically relevant, b) making T large enough which essentially ensures that the
a surface is obtained, as shown in [3].

It is well known that, under mild assumptions, executions of switched systems are continuous with
respect to the initial conditions [11]. It is thus reasonable to expect that also the dependence of the
optimal switching times on x0 is continuous. This observation allows us to formulate an alternative view,
as proposed in the previous paragraph, of the initial condition problem as a sensitivity problem. In this
paper, we will assume that the system only undergoes a single transition, even though the derived results
can easily be extended to situations with multiple switches.

Let
Θ(τ) = pT (τ)R, (13)

where τ is the switch time, p is the costate given in (6) (without the discontinuities defined in (7)), and
where R is given in (3), where we have dropped the explicit dependence on i since we only have a single
switching time τ .

Viewed as a free parameter over which we wish to minimize the performance index, we note that the
optimality condition for τ becomes

Θ(τ) = 0. (14)

But, since the optimal switching time depends on x0, we can apply the chain rule to Θ and obtain

dΘ

dx0
= RT dp(τ)

dx0
+ pT (τ)

dR

dx0
. (15)

After some calculations, following the argument in [8], we get that

dp(τ)

dx0
=

∫ T

τ

[

ΦT
2 (s, τ)Lxx(x(s))

dx(s)

dx0
+

dΦT
2 (s, τ)

dτ
LT

x (xτ )
dτ

dx0

]

ds − ΦT
2 (τ, τ)LT

x (xτ )
dτ

dx0
. (16)

Here Φi, i = 1, 2 are the transition matrices associated with the linearizations of the two systems, Lx is
shorthand for ∂L/∂x, and xτ = x(τ).

In order to compute dx(s)/dx0, we again apply the chain rule as

dx(s)

dx0
=

∂x(s)

∂τ

dτ

dx0
+

∂x(s)

∂xτ

∂xτ

∂τ

dτ

dx0
+

∂x(s)

∂xτ

∂xτ

∂x0
. (17)

Now, ∂x(s)/∂τ = −f2(x(s)), ∂x(s)/∂xτ = Φ2(s, τ), ∂xτ/∂x0 = Φ1(τ, t0), ∂xτ/∂τ = f1(xτ ), Φ2(τ, τ) = I,
dΦ2(s, τ)dτ = −Φ2(s, τ)∂f2(xτ )/∂x, i.e

d

dx0
p(τ) = (I1 − I2 − I3 − K)

dτ

dx0
+ I4, (18)

6



where

I1 =

∫ T

τ

ΦT
2 (s, τ)Lxx(x(s))Φ2(s, τ)f1(xτ )ds

I2 =

∫ T

τ

ΦT
2 (s, τ)Lxx(x(s))f2(x(s))ds

I3 =

∫ T

τ

fT
2x(xτ )ΦT

2 (s, τ)LT
x (x(s))ds (19)

I4 =

∫ T

τ

ΦT
2 (s, τ)Lxx(x(s))Φ2(s, τ)Φ1(τ, t0)ds

K = LT
x (xτ ).

After some straightforward calculations (as shown in [8]), we obtain

dΘ(τ)

dx0
=

[

RT (Qf1(xτ ) − ΦT
2 (T, τ)LT

x (x(T ))) + pT (τ)Rxf1(xτ )
] dτ

dx0
+

[

RT Q + pT (τ)Rx

]

Φ1(τ, t0),

(20)
where

Q =

∫ T

τ

ΦT
2 (s, τ)Lxx(x(s))Φ2(s, τ)ds, (21)

which can be interpreted as a quadratic costate. Hence, if we know that τ is a local optimum for an
evolution starting from x0, then, assuming that the system starts from x̃0 = x0 + δx0, the new optimum
is τ + δτ + o(δx0). And, according to (20),

δτ =
−[RT Q + pT (τ)Rx]Φ1(τ, t0) δx0

RT (Qf1(xτ ) − ΦT
2 (T, τ)LT

x (x(T ))) + pT (τ)Rxf1(xτ )
. (22)

We now briefly discuss how to put (22) to use for the construction of optimal switching surfaces. The
idea is to find a set of optimal switching states (which build up the optimal switching surface) through the
knowledge of the variation in the optimal switching times as the initial conditions varies. And, drawing
the optimal switching surface now amounts to finding the curve associated with those τ -parametrized
states such that Θ(τ) = 0, which is a task that can be accomplished thanks to the sensitivity analysis
described by (22).

As an example, consider a system described by fi(x) = Aix with A1 = [−1 1;−2 − 1] and A2 =
[−1 2;−1 − 1]. Starting with an initial guess of τ = 0.5, for the nominal x0 = [0.3, 0.15]T , a locally
optimal switching time was found to be τ = 0.279. However, a switching surface, depicted in Figures
3(a) and 3(b), can be obtained by varying the initial state, using τ = 0.279 as the initial condition for
the switching time, as the initial conditions were varied. In fact, the resulting switching surface matches
quite well the true, optimal switching surface (for switched linear systems, the optimal switching surfaces
are known to be homogeneous [15]) in the inifinite horizon case, as is indicated by Figure 3(a) and ven
though our problem is a finite horizon problem, by choosing T large enough, the solutions to the finite
horizon and the infinite horizon problems are qualitatively similar, as discussed in [3].

5 Conclusions

This paper presents two methods for getting rid of the dependence on the initial condition when optimizing
over when to switch between different modes in a switched-mode system. The dependence on the initial
condition was first dealt with by minimizing the switching parameter over the maximum cost for a given
set of initial states. The only assumption made was that the initial state was confined to a given region
in the state space. A second, alternative, sensitivity-based approach was also considered, and simulation
results testify to the soundness of the two proposed methods.
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Figure 3: Executions of the system and the optimal switching surface
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