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Abstract— Social insects have long served as inspiration to attracted to the general area in which the females reside.
the multi-agent community. In this paper, we take the oppose At the same time, we want the model to be simple, and,
approach and see if tools from decentralized, networked cdrol as such, amenable to analysis. What we will propose is
can be used to predict observed, biological behaviors. In . ’ ' , .
particular, we study the silkworm moth, the Bombyx Morj and a first Order_ mOd?I of t_he of _the male moths’ dynamics,
we model these moths as first-order networks in which the mate In combination with a immediate broadcast protocol for
male interactions are defined through a proximity graph. The pheromone propagation. As a result, we will arrive at a
male-female interactions are given by a broadcast protocoin  model that can predict the attraction to the domain aroued th
which the females that are releasing pheromones are visibl® o males. without providing any clues as to what the males’
all the males. Using barrier certificates, the resulting, swiched ! . . . .
network is analyzed and it is shown that the males are attractd behaviors might be once inside that region. These claims
to and trapped in a region defined by the female moths, as is are supported both by the theoretical developments and by

the case in actual silkworm moths as well. extensive simulations.
The outline of this paper is as follows: In Section II, we
. INTRODUCTION review some basic facts from the study of social insects,

The research on multi-agent robotics and decentralizewith particular focus on their communication strategies.
networked control has drawn significant inspiration fronyVe discuss the manner in which the silkworm moths use
interaction-rules in social animals and insects [2], [B], [n  such strategies and, in Section I, we define the network
particular, the widely used nearest-neighbor-baseddntian ~ characteristics that correspond to these interaction ant ¢
rules, used for example for formation control [4], [9], [12] Munication strategies. In Section IV, the derivations are
consensus [8], [16], and coverage control [1], [11], has garried out and we show that the males are attracted to
direct biological counterpart, as pointed out in [2]. Insthi an area defined by the intermittently pheromone releasing
paper, we reverse this direction, i.e. we draw inspiratiofemale moths. Some simulation results are given in Section
from recent results on common Lyapunov functions foV, and the conclusions in Section VI.
switched systems, barrier certificates, and networkedrabnt
to understand particular swarming phenomena observed in II. SOCIAL INSECTS
the silkworm mothBombyx Mori ) . i i

Silkworm moths are known to swarm in tight geometrical -@rge-scale biological systems, i.e. systems that consist
configurations, such as vertical cylindrical structuresisTis  ©f @ large number of interacting individuals, have provided

caused by the females’ intermittent releasing of a pher@mofuidance to the multi-agent community. This in particular
- bombykol- to attract male moths. This pheromone i true when studying networked, decentralized control sgste

essence makes the females act as attractors to the males, Byfhich one typically wants to model and infer global prop-

the intermittent nature of the release produces an inhgren€ti€S from the specifications of the individual components
switched system. Moreover, the spatial distribution of th&nd their inter-connectivity [13]. One particular area vehe
females imply that the males are attracted to a general ariis guidance has proven useful is when trying to charaeri
rather than to a particular point, which is what is believed'® role of communications between agents. In fact, it has
to cause their characteristic swarming. !ong been established that communications are vital fa_asoc
In this paper we try and produce a model that is as Simplgsects, where tasks such as division of labor, foraging for

as possible yet expressive enough to capture the relevéﬂ?d’ and population control are crucial to their existence

biological phenomena under consideration. In particuler, For a represent_atlve _sample, see_ [2]_' [181) .
need to be able to model the intermittent nature of the ©N€ instance in which communications are crucial for the
pheromone release and their effect on the male moths wiirvival of the social insects is during mating. Many specie

sufficient fidelity that as a result, the males are provabl{P™m swarm clouds to increase their chances of locating
partners during their reproductive phase. These swarnaslou
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dance. These communication strategies have their disadvan
tages. For example, visual signals have "physical bafriers
and along with acoustic signals, they expose the signaling
insect to predators. Thus, initiating a swarm in such masner
presents a risk. @)

In contrast to this, insects that use olfactory signaling
throughpheromoneso attract partners avoid these problems
since most predators do not have the specialized recept®ig 1. Males, small circles, within the critical distanfeof each other
required to identify the scents. Moreover, in the rare caderm an edge in the interaction graph. Moreover, all malesnfedges
that such predators do appear, the pheromones are usulff f&mies eleesng pheromones (rge biac) uhatemiemaes o
exuded in such small quantities that predators cannot track
down the origin of the scents. The particular social, swagni
insect that we focus on in this paper is the silk mBtimbyx o ) ] )
Mori, that uses an intermittent pheromone release strategyPue to the limited interaction ranges over which the
for long-range communications [7]. The particulars of thighoths can detect each other in the pheromone-free case,
strategy, together with a mathematical model of the swagminfve can define the instantaneous, male proximity graph

silkwork moth, is the topic of the next section. G™(t) = N™x E™(t), where, for two distinct mothgi, j) €
EM(t) < [x"(t) —x]'(t)[| <A, for some critical interaction
I1l. NETWORK CHARACTERISTICS distanceA. This construction ensures that the interaction

graph is simple (no self-loops) and undirected. In factsit i
a so-calledA-disk proximity graph, as defined for example
From the preceding paragraphs, it is clear that the nen [1], [9].
work model has to be heterogeneous in the sense that theSince it is costly for the females to be releasing
agents (network nodes) will be divided up into two classegheromones, the females typically only release pheromones
corresponding to male and female moths, respectively. For small bursts. In our model, we let the females that
this, we assume that the swarm contah® male moths are releasing pheromones at a given timiee denoted by
and N female moths, with the corresponding index set®l(t) € N (with cardinalityN(t)) as a subset of the total
N™={1,...,N™ Nf={1.. Nf} (Here we have used female moths in the swarm. This also brings us to our first
the convention that the superscriptsand f refer to "male” assumption:
and “female” respectively, which we will continue to do Assumption 1:Nf(t) #0, V t.
throughout this paper). We moreover assume that the mothEus at any given time, there is at least one female moth
states take on values irdadimensional space (in a kinematic releasing pheromones.
moth modeld would typically be 3), i.e. thax" € RY, Vie Since the olfactory communication strategy acts at much
N™ and xif eRY vieNF. greater ranges and at fairly high-speeds, we assume that
In order to produce a simple yet sufficiently expressivéhe pheromones act as a broadcast strategy that enables
model of the inter-moth interactions, we first need to discusgach male to immediately detect the relative displacement
some known facts about how communications occur in regf a female moth irNf(t). As a result, we define the total
silkworm moths. In general, a moth can determine the gend#teraction graph a&(t) = N(t) x E(t), where the node set
of another moth by looking at its abdomen, i.e. if the mothis given by N(t) = N"U (N™+ Nf(t)), and the edge set
are close enough, they can determine if a neighboring moi# defined through(i, j) € E(t) if and only if one of the
is male or female. This visual communication strategy igfollowing three conditions hold
however, negligible at long ranges, especially during the - m
: (i,j) e EM(t)
mating process. In fact, when male moths detect pheromones . m m f
. ! . . ieNT jeNm+NY(1)
in the air, they start following the pheromone trail and when j € N™ i€ Nm4N (1)
they see other moths, they can immediately identify males : ’ ’
without looking at their abdomen, since they will not "smiell The interpretation behind this somewhat dense formulation
right [17]. is that an edge exists between nodes in the total interaction
In the silkworm moths, only the females releasegraph if and only if the nodes are both corresponding to
pheromones as opposed to other insects that employale moths within a distanak of each other or exactly one
attractant-pheromones. For example, the male lovebugs &-the nodes corresponds to a female moth that is releasing
lease pheromones to create a swarm but once the swarnpigromones.
initiated, they stop releasing pheromones and the malés darThe main idea now is to apply a decentralized control
across the swarm in hopes of flying into females and carryirgirategy over the set of male moths. This should moreover be
them to mate in vegetation below the swarm. In the procesdone in such a way that the individual moths are governed by
males often fly into other males and this is avoided in motha control law that is only allowed to contain references ® th
since female moths keep releasing pheromones throughoelative displacements between the moth and its neighgorin
the swarming process until they locate a mate. moths in the interaction graph, as seen in Figure 1.

A. Network Topology



B. Moth Dynamics one just have to follow Lyapunov’s stability theorem, e.g.
One explicit aim with this paper is to tap in to the[10]- Let us choose a level selC(cy), with ¢1 > ¢, as

large multi-agent literature on decentralized coordorain  9C(c1) = {x € R"V(x) = c1}. Hence,dC(c1) C C(c) and

order to understand biological phenomena. Even thougl thefonsequentlyy < 0 in the entire se¥C(cy). As a result,

are scant biological evidence that the moths execute line@rstate trajectory that crosses the level surfe¢e) = c;

control strategies, we, for the sake of analytical simplici advances to a seiC(c) for somec; < cz.

assume that this is the case. And, we leave the biologicalAS long asv <0 the trajectory moves from one level set to

reasonableness of this model to a further endeavor and tz@other. Therefore, if a statgt) € C(c), there exists & >0

the point-of-view that the model should be judged based o#ch thaix(t+T) ¢ C(c), thus establishing the attraction.

the results it generates. We have already establishedhthat t I [14], [15] the existence of a so-called barrier certifecat

male moths will only detect other male moths when they arguarantees that when the state space is separated intd "safe

within a certain critical distance of each other while feenal @hd "unsafe” regions, then trajectories originating in sie¢

moths releasing pheromones are always visible to therff safe states never enter the unsafe regions. We can now

Thus, we will assume that the nowadays highly widesprea@PPly exactly the same thinking, separating the state space

linear consensus equation is used for defining the motion 8ito the disjoint region<C(c) and C'(c), and defining the

the male moths as barrier certificateB(x) as
Assumption 2: B(X) =V (X) — ¢
. — _ VS i m
== | (iz)eEm(X' Xj), Vi €N, The fact thatB(x) is indeed a barrier certificate since it
S satisfies the following conditions:
where we use the convention thgt= X", vV i € N™ and B(x) > 0V x € C(c)
Xi :Xif_Nm, VieN™4+N'(t). Under this allocation of indices, B(X) <0V xe C'(c)
we have that the firdil™ x;’s correspond to male moths, and %(x)f(x) <0, Yxe ac(c),

the remainingN’ to female moths. And, to make matters
a little bit less complicated, we will also assume that thavherex= f(x). And, according to Theorem(1) in [14]/(c)
female moths are stationary during the swarming processwill thus act as a trapping region, thus establishing the
Assumption 3: two properties needed to characterize the behavior of the
. . silkworm moths.
X = 0, Vie '\.Im+.N.f ®). However, what remains to be done is of course to find
As a result of this assumption, it is expected that the malseuch a function/(x) together with the correspondirgfor

gﬁ;ﬁnwmtheer;? (Lijrgcecrlr%?t?e;ot)theh staﬂonaryt, fe':lma_lreh.mql;r;ts b e actual moth dynamics. And, as the network topology is
owing . pheromone frails. This 1 changing, we need to find and c that are common to all
topic of the next section. possible network topologies [3].
IV. ANALYSIS OF SILKWORM MOTH SWARMS

A. Barrier Certificates and Attraction Functions . . . .
For the sake of notational clarity, we first start with the

Since the aim of this paper is, in part, to show that thEituation in which the moths are all evolving & i.e. they

glmple, flrst—order network r_nodel of the skaorm moths 'Sare one-dimensional. We then proceed to the general case in
in fact rich enough to predict the known behavior that th

hs exhibi how that thev do in f Svhich they evolve inRY.
moths exhibits, we must show that they do In fact Converge rpq fircr problem is to find a suitable candidate function

to an ap_propnate, geometric shap_e_. For_th|s we first nqur V in the previous section. And, since there is no reason
to establish convergence to a specific region, and then sh%v believe that the male moths will end up close to the

that this region in fact acts as a trapping region, I.e. Or]Cc‘frigin we instead focus our attention on the centroichlbf
inside, they never leave. For this, we first recall some tesul ’

. ; . o the female moths. We Igd" denote this (one-dimensional)
involving barrier certificates.

: o ) centroid, i.e.
Barrier certificates are typically used to show that a certai

region is a trapping region [14], but we also need to establis pf =5 leif.
attraction. For this, we need to slightly modify the resiuits N' &

[14] and we do this for a general system whose state evolv@sshould be noted that the system dynamics will undergo
in R". In fact, if there exists a continuously differentiable gjscrete transitions when male moths enter or leave each
radially unbounded functioW : R" — R andc € R such that thers proximity disks, or when female moths initiate or
V(0) =0 andV >0V xe R"\{0} andV <0, ¥x€ C(C), terminate a pheromone release phase. As such, we obtain a

B. 1D-Swarms

whereC(c) = {xe R" | V(x) > c} then switched dynamical system. And, one technique for proving
(i) x(0)eC(c) = x(T) ¢ C(c) for someT >0 the stability of such systems is to try and find a common
(i) x(0) ¢ C(c) = x(t) £ C(c), vt > 0. Lyapunov function. In fact, as shown in [3], a switched

To see that state trajectories, starting in €ét), enter system is asymptotically stable for any possible switching
C(c)'s complement (denoted i/ (c)) after some finite time, sequence if and only if there exists a common Lyapunov



function. In our case, asymptotic stability is not what wewvhere we have used the fact tHal'(t) is positive definite
are after, but nonetheless, we need to find the appropriatelet it induce a norm. Now
V that acts as an attraction-barrier certificate for all nekwo .

topologies. W =—(x"(t) - 1Pff+2(1pf ~1p' (t)),Xr:(t) —1p" )L
For this, we define the continuously differentiable funatio = —[Ix"(t) = 10" ||Emg) — (XT(t) — 1p",
. oN™
W:R™ —Ras 1p" = 1p"(t))Lmg
1 < —IXMt) = 10" || Py + [IXT(t) = 1o | Lm
W(Xm(t)) _ Eme(t) o 1pf||2’ H f ( ) f ”L (t) ” ( ) ”L (t)
110" —1p" (t)[[Lmg)
then a promising candidate attraction-barrier certifiéate = —||xM(t) — 1pf||,_m<t)(||xm(t) = 1pr|_m(t)
f f
1 1 —111p" = 1p" (t)[lLm))-
V(X) == WX —=N™(p")? 2. ,
) 2 W) 2 )l In other wordsW < O if
wherex™ = (x ... xm)T € RN", and wherel = (1,...,1)7 IX™(t) = 10| Lmgy > 110" — 1" (1) [[Lm)

is the vector with ones along each components.

As a final step, we note that
We now get that

2 2

_ f 110" = 1o ®)[Zmgy = (0" +p" (1) = 20" (1))1TL™(t)L.
m oM m _

W) = O(1), X1 — 107), which in turn is equal to

but before we can tackle this expression, some commerp{,anf(t)(pf2+pf(t)2_zpfpf(t)):Nme(t)(pf_pf(t))Z,

about the dynamics must be made. In fact, in the one- ‘ ‘ )

dimensional case, the dynamics in Assumption 2 can B¥otice thatN'(t) < N', and that the distance from the

rewritten as centroid to any centroid associated with a subset of female
moth positions is maximized by a single moth position,
XM(t) = —L™(t)x™(t) + Nf(t)lpf(t), denoted byf*, where

. | o £+ = argmay {(p" —x')?).
wherep'(t) is the centroid associated with the female moths %
currently releasing pheromones. Moreover, this expressio Summarizing these observations, we get Was decreas-
comes from the graph Laplacidn(t) associated with the ing as long as
total interaction graplG(t) as .
X () = 10 [ Zmgy > N™NT (o — £)2
Lmt) —11f hi It involves the. ™ : |
L(t)= L This result involves thé™(t) norm and to obtain a result
- that holds for all topologies, we need to expapd'(t) —

12 . )
The reason that the graph Laplacian takes on this speciﬁg ”'—m(U' Itis in fact straightforward to show that

form is that each male moth is assumed to be able to interagimt) _ 1572, > N"N'(t)(('— p")2+ (6§ —p')?

with all female moths currently releasing pheromones. We m f12

have furthermore made the assumption that the females do + o Rm—P))

not interact with each other (hence tN&' in the Laplacian) |f we now let XM maximize (X" — p")2, Vi e N, i.e. if

but this assumption does not matter for the developments jm_ is the male moth furthest away from the centroid of the

this paper. Moreover, under Assumption 1, we get thd)  females, then,

is positive semidefinite, and, as shown in [R]'(t) (which

is not a graph Laplacian) is positive definite for &ll NN () (- p")?
This leads us to a formulation of the derivativeWfas

08 —p+ ..+ Rm—p"?)
NN (t) Orax— ")

N (Xax— ")

Therefore W < 0 and subsequently < 0 when (X7, —

: . o2 < N(gf _ £12
A further observation to make is that under the assumptiot )~ > N'(p" — )%,
that each male moth can interact with every female moth NOW, let us define the s&d such that

vV IV +

W= (xM(t) —1p", —L™t)x™(t) + N (t)1p " (t)).

releasing pheromones, we observe that S={xe RNmemax_pf)z > Nf(pf _ f*)z}’
L™t)1=Nf(t)1, where we recall thakh,, is the male moth furthest away
from the centroid of the females, whife is defined as* =
and hence argma§_f{(pf —xif)z}. It is clear thatV <0 if xe S i.e.S

) obeys the property:
W= —(x"(t) - 1p",X"(t) — 1p" (1)) L), scc/(d)



for some choices ofl. We can thus find the required in FurthermoreW is still decreasing as long eﬂ:xm(t) —(lg®
the previous section as Inm)pf [T [(1g® Inm)p" —1g @ Iympf (t ME sLme)-
, Notice now that the term|(lg ® Ixm)p’ — Iy ®
= R[S CC'(d)}. .
c=min{d € R[S C C'(d)} nmp (V)17 omyy can be written as N™N(t)[p’

In other words, with this choice o andc, we have pf(t)|2 and that N™N(t)|pf — pf(t)]? is bounded
exactly the required properties from the previous sectloabove by NmeHp pf(t)||%. Hence, if we let f* =
needed to establish attraction as well as trapping. (Foreagmafop et We have
special case of these results, see [19],[20]). f f C

NN (©)]lp" —p"()[I> < NNl — £+
C. In Higher Dimensions Wle"=p I < H‘: ) |
m .
For higher dimensions, we assume that the motion of the We note that [x™(t) — (lg ® Iym)p™|* is equal to

f m 12 ; mpg f m fir s
male moths is still governed by the linear consensus eqluatigI (®)1X _1ﬁ Hm’ and 5'?029\' N'(t)[[x™—1p"[| is bounded
in each dimension, i.e. elow by N™||xh.x— 1p'||“, we can guarantee attraction

and trapping in arbitrary dimensions sind¥ < 0 (and
Sik=— 5 (ik—xxK, VieN™ ke{1,....d}. consequently < 0) if
il (,1)eE®)
_ m IXfhax— 10117 > N[|p" — [/,
If we define the statez € RNY as z =

(Xti,... )T, Vi€ {1....d}, ie z is a column wherex™ s the male position that maximizels; — pf||2.

vgctor _that contains all moth Ioca_tions in thie— t_h V. SIMULATIONS

dimension, then the consensus equation can be rewritten as, ig re 3, a simulation is shown that illustrates how the
z=-L(t)z, Vie{l,...d}. males moths eventually get trapped in a region defined by the

_ _ T female moths. There are 30 males (small dot) and 4 females,
Moreover, if we define the state= (z,...,z3)" then the where the females that are currently releasing pheromones

consensus equation can be expressed as have a ring around the dot. Moreover, the centroid of visible
S = 1 L™ - N (o (1) @ 1, female_:s is denoted by an ’x'. _
®) 4® m (®) (n):r QLNOLS Pm To illustrate the fact that we do not have asymptotic
= (la@ L) (=x"() + (la @ Inm)p " (1))- stability to a point, we ploW as a function of time in
The centroid is given by in Figure 2. From that figure, it is clear th#{ serves as
. an attraction-barrier certificate in that it has a negatiret
1N derivative only initially. In fact, from the figure we observ
- Nf lei ' thatW > 0 aroundt = 200.
and we now proceed in the same way as for the 1D case in W Vs Time

the previous section by letting/ be given by
1
W = Z[[X"(t) — p" @ Lym %,
with the corresponding candidate attraction-barrierfoeste
V beingV (x) = 3 || W(x) — 3N™(p")? ||
Now, W in the higher dimensions can be expressed as
W(XM(1)) = (x"(1),X"(t) = p © Inm),
or, equivalently

W= <(|d ® Lm(t))(_xm(t) + (ld ® :I-Nm)pf (t))’ 05, 100 200 VS(‘JO 200 500 600
Xm(t) _ pf ® 1Nm> Time(s)

As per the previous section, we again let a positive definite Fig. 2. Plot of the functionW(x) against time.
matrix, in this casdyq ® L™(t), induce a norm
W = (—X"(t)+ (Ilg® Inm)p" (£),X™(t) — p" @ Inm)y, e mey
= —[IX"(t) — (4@ Im)p" gL mee (IX™(2) VI. CONCLUSIONS
—(lg® 1ym)p" ligeLm) — [(1g® 1nym)p " In this paper, we model the silkworm moth, tB®@mbyx

_|d®1NmPf(t)H| aLm)- Mori, as a first-order network in which the male-male
d interactions are defined through a proximity graph. The male

We thus note thatW < 0 if me(t) (lg ® female interactions are given by a broadcast protocol in

1ym)pf ligeLme > [[(la® Inm)p’ — 1g @ Iympf (OlligeLme)-  which the females that are currently releasing pheromones
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(a) All four females are releasing pheromones.
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(c) A single female is releasing pheromones.
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(b) Two females are releasing pheromones.

t = 447.5sec

(d) Two females are releasing pheromones.

Fig. 3. A simulation is shown, where male moths are shown iasnaall dots, while females releasing pheromones are dendthdh circle around them,
and their centroid is denoted by a cross.

instantaneously are visible to the males. The resultingfo]
switched network is then analyzed using barrier certificate
tools. In fact, our aim was to show that with such a simple,;
model, the observed swarming phenomenon in which the
male moths end up around the females moths can in fact Bél
predicted. Simulation results illustrate these resultthtr.
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