Linguistic Control of Mobile Robots

Magnus Egerstedt*

magnuse@hrl.harvard.edu
Div. of Engineering and Applied Sciences
Harvard University
Cambridge, MA 02138, USA

Abstract

In this paper we study the interactions between
symbolic computer programs and mechanical devises,
e.g. mobile robots. We show that by using motion
description languages for generating continuous mo-
tions from symbolic input strings, this interaction be-
tween the continuous and the discrete can be given
a meaningful control theoretic interpretation. We fur-
thermore illustrate how robot behaviors can be learned
within this framework. We also investigate how to
choose the motion description languages in order to
minimize the lengths of the inputs to the robots.

1 Introduction

The use of computers for controlling mechanical de-
vises, such as robots or machine tools, has brought to
the fore the need for a systematic study of the inter-
actions between the symbolic computer programs and
the continuous devise dynamics. Typically, this inter-
action is defined by the way the continuous machine
operates on the outputs from a computer generated
motion control program. Such a motion control pro-
gram generates strings of symbolic inputs to a real
time system that controls the devise based on sensory
information about internal states as well as the en-
vironment it is operating in. In order to understand
the interactions between these two heterogeneous com-
ponents, different hybrid architectures, serving as ab-
stractions between continuous and discrete control,
have been suggested. In [4] a general model for such
hybrid systems is proposed: & = f(z,y,v(|p|)), p =

*Supported in part by the US Army Research Office, Grant
number DAAG 5597-1-0114, and in part by the Sweden-America
Foundation 2000 Research Grant.

g(z,y,v(|pl)), vy = h(z,v(|p])), where z is the contin-
uous state of the system and y is the measured contin-

uous output signal. Moreover, v is the symbolic input
string from the motor control program and the evolu-
tion of the scalar p triggers the reading of that string.
Here |-| denotes the floor operator, and g is assumed
to be nonnegative for all arguments.

In this paper we model the way linguistic control
signals affect mechanical devises on this form. We
will show how to choose the symbolic instruction set
in such a way that it is rich enough to support the
generation of continuous control commands that make
robots carry out navigation tasks in cluttered environ-
ments. We will also construct an interpreter mecha-
nism for generating these control commands from the
symbolic inputs.

The symbols in the motion alphabet that we use for
generating the continuous motions should represent
different control actions that, when applied to a spe-
cific machine, define particular motion segments. This
idea has been made concrete by using motion descrip-
tion languages (MDLs), as suggested in [3, 4, §]. A
MDL is a language given by a set of symbolic strings
that represent idealized motions. Different authors
have used different types of letters in the motion al-
phabet, but here we let them be triples (u, k, £), where
u is an open-loop component, k is a feedback mapping,
and ¢ is an interrupt function that tells the system
when a new input symbol, or control triple, should be
read.

2 Kinematic Machines and Motion De-
scription Languages

The primary objects of study in this paper are so
called motion description languages (MDLs). Given a
finite set, or alphabet, A, by A* we understand the

set of all strings of finite length over A. There is a
naturally defined binary operation on this set, namely
the concatenation of strings, denoted by a; - as, i.e.
ay - as € A* if a1,a9 € A*. Relative to this operation,
A* is a semigroup. If we include the empty string in
A* it becomes a monoid, i.e. a semigroup with an
identity, and a formal language is a subset of a free
monoid over a finite alphabet.

Now, by a motion alphabet we mean a possibly in-
finite set of symbols representing different control ac-
tions that, when applied to a specific machine, define
segments of motion. A MDL is thus given by a set
of symbolic strings that represent idealized motions,
i.e. a MDL is a subset of a free monoid over a given
motion alphabet. Particular choices of MDLs become
meaningful only when the language is defined relative
to the physical devise, or kinematic machine, that is
to be controlled. By a kinematic machine we under-
stand the tuple M = (U, X,Y, F,G, H), where U is an
input space, X is a state space, Y is an output space,
F:X —>5TX and G: X = TX are vector fields, and
H : X - Y is an output map. The evolution of the
machine is given by & = F(z) + G(x)u, y = H(z).

Each letter in the motion alphabet corresponds to a
control command that generates a particular motion
segment on a given kinematic machine. We let the
letters in the motion alphabet that are read by M
be triples of the form (u,k,&), where u : R — U,k :
Y > U,and £ : RxY — {0,1}. If at time ¢,
M receives the input string (u1, k1,&1), - - -, (up, kp, &),
then z evolves according to

Z‘ZF(.’IJ)‘FG(!E)(Ul +k1(y)); to<t<T)

b= F(@) +G@)(up + k) Ty <t<T,,

where T; denotes the time at which the interrupt &;
changes from 0 to 1.

The model of a trigger based hybrid system as de-
scribed in the introduction can moreover reproduce
this behavior if symbols are interpreted and oper-
ated on as follows. Let the input string be such that
v(1) = (u4, ki, &), @ € Z+, and let

& = f(z,y,0(lp]) = f(@,y, () klp)s ELp))
= F(2) + G(z)(up) + kp (y)
y = h(z,v(|p])) ==, (up) k) €ip))
= H(z)
p = gy, v(p]) =9y, W k) €p))
_ { 0 ifELpJ(t,y)ZO
& i &y (ty) =1,

where 0; is a unit impulse at time ¢, £(0) = zo, and
p(0) =1.

It is clear that we now have a construction that
allows continuous machines to operate on linguistic
inputs in a way that can be given a meaningful control
theoretic interpretation.

2.1 Reinforcement Learning

One of the advantages of letting the symbolic inputs
correspond directly to control commands is that it is
possible to let robots learn continuous-time behaviors
in a computationally feasible way.

Consider a discrete time system whose states evolve
on X C R™. The space of admissible controls is given
by U C R™, and transitions are generated accord-
ing to z((k + 1)A) = A(=z(kA),u(kA)), where A is
the sample time of the system. Given an initial state
x(0) = zo and a control policy 7 : X — U, a dis-
counted, cumulative cost can be defined as

o

VT (20) = Y v¥r(z(kA), m(z(kA))),

k=0

where v € (0,1), and r : X x U — R* is the incre-
mental cost. (See for example [9].)

Now, the Bellman equation associated with the
problem of minimizing V' over all possible policies is

V*(x) = Lnellrjl{r(:c,u) +9V*(A(z,u))}, Vz € X,

where V* denotes the optimal value function. The
Bellman equation directly gives that the optimal pol-
icy satisfies

7*(z) € argmin{r(z,u) + YV*(A\(z,u))}, Vz € X.
uelU

These types of discrete-time reinforcement learn-
ing problems have successfully been implemented and
solved using the @Q-learning method. Proof of con-
vergence has been given for finite-state Markovian de-
cision tasks [13] and for linear discrete-time systems
with infinite state and control spaces (see for example
[2]), which is the case in our discrete-time dynamical
system example.

Using a @-function, the discrete-time learning prob-
lem can be formulated in this setting as

Q*(z,u) = r(z,u)
+ 'ynéi(rle*()\(m,u),v), Vze X,ueU
c

™ (z) argmin@Q*(z,u), Vo € X.

uelU

The advantage with the Q-learning approach is that it
enables us to iteratively approximate the @Q-function,
and in [1] this was done in a provenly convergent way
using stochastic approximation techniques. The idea
is, at the pth iteration where the learner is given the
data pair (zp, up), to let the Q-function be updated as

Qpri(z,u) = Qp(z,u) — apgp(z, Tp,u,up) -
: (Qp(xpaup) —r(zp, up) —

= 7 i Qp(A(@p, up), v),

Vz € X,u € U, where a, = agp™?, ag > 0, and {g,}
is a sequence of Hilbert space kernel functions [1].

However, if the system is evolving in continuous
time, the optimal value function must satisfy the con-
tinuous time Hamilton-Jacobi-Bellman equation (see
for example [5]), which constitutes a notoriously hard
problem. But, by letting the system learn letters
from a motion alphabet, we can treat the continu-
ous problem as a discrete-time problem. What the
robot needs to learn is simply what triples (u,k,§&)
to use, i.e. if we assume that we observe the states
of the system, we want the robot to learn a policy
T: X 5 Ux(X >U)x RxX — {0,1}). A
direct modification of the previously stated discrete-
time, stochastic approximation algorithm can be made
to achieve this.

2.2 Instruction Complexity

One of the driving motivations behind this work
was to understand what role feedback plays if one
wants to minimize the number of symbolic instruc-
tions that one needs to send to a given robot. In other
words, is it possible to reduce the length of the words
over a given motion alphabet by allowing feedback,
compared to the purely open-loop case? In order to
capture the difference in the complexity of operating
a robot with and without reference to sensory infor-
mation, i.e. when using closed and open-loop instruc-
tions, we have to define a complexity measure that
captures this difference in a meaningful way.

Definition 2.1 (Instruction Complezity) Given a
kinematic machine M and a motion description lan-
guage L, we say that the instruction complezity for re-
alizing o given task T is given by the minimum length
word u = (u1,k1,&), - -, (up, kp, &) € L that guaran-
tees a successful execution of T on M. We denote this
by Cr (ﬁ, M) .

3 Mobile Robots
3.1 Basic Definitions

What makes the control of mobile robots particu-
larly challenging is the fact that the robots operate
in unknown, or partially unknown environments. Any
attempt to model such a system must take this into
account, and we choose to do this by letting the robot
observe certain facts about the environment. We let
the robot be defined as follows:

Definition 3.1 (M;) Let the kinematic machine M
be given by & = v, z,v € R% y, = =z, y, =
c;(®), y1,y2 € R, where c; is the contact force from
the environment.

Remark 3.1 The contact force from an obstacle
could either be generated by tactile sensors in contact
with the obstacle or by range sensors such as sonars,
lasers, or IR-sensors.

Relative to this machine it is now possible to define
the following two MDLs for distinguishing between the
open-loop and the closed-loop cases.

Definition 3.2 (Open-Loop and Closed-Loop MDLs)
Let the Open-Loop MDL, L., be given by the free
monoid over the set

{(u,k,6) |[ue R*, k=0, ¢:R—{0,1}}.
Consequently, let the Closed-Loop MDL, L., be given
by the free monoid over the set

{(’U/,k,é) | u = 07 k(y) € {ﬁ(wF _yl)aDy2}7
£:R* = {0,1}},

where k > 0 is a constant, D is a linear map from R?
to R?, and zp is the final, desired robot position.

By a point-to-point navigation task we understand
the problem of moving the robot between given initial
and final states in a safe way. (The robot should not
intersect the interior of any obstacle.) We denote this
task P2P. The problem that we try to solve is thus:
Find the two instruction complexities Cpap(Lo1, M1)
and Cpap(Le, M1). The reason why we believe that
M, is an appropriate machine, and £, and L. are
appropriate MDLs is that they are simple enough
to allow us to compute bounds on the complexities
Cpop (Lo, M) and Cpap (Lo, M1). At the same time
they are expressive enough for solving the point-to-
point navigation task, as we will see in the paragraphs

to follow. The paths generated by L, on M; are fur-
thermore identical to those paths that are considered
in the literature on the complexity of minimum time
or shortest path algorithms for robot motion planning
in dynamic environments [6, 10, 12].

3.2 Complexity Theorems

Let the environment £ be given by a compact and
convex polygon in R?, and let N disjunct, compact,
and convex polygons with M vertices each be popu-
lating the interior of £. For a given obstacle P, int(P)
denotes its interior, AP its boundary, and vert(P) and
face(P) are the sets of vertices and faces in P respec-
tively. We furthermore let cone(z, P) be the smallest,
closed convex cone that originates from z ¢ int(P)
and contains P. We also let line(z1,z2) denote the
set {z € R* | z = am + (1 — @)z, a € [0,1]},
and we say that xo € & is wvisible from z; € &£ if
line(z1,z2) Nint(P;) =0, i =1,...,N.

Definition 3.3 (Visibility Chain) V(zo,zr) is
said to be a visibility chain if it satisfies the following:
V(zo,zr) = O if zr is visible from xo. Otherwise
V(zo,zr) = {P1,..., Py}, where Pj41 is the obstacle
closest to xp that is visible from Pj. Here Py is
visible from xp and Py is the obstacle closest to g
that is visible from xy.

3.2.1 Open-Loop Control

Theorem 3.1 (Open-Loop Complexity) In a
convex environment populated by N convez, polygonal
obstacles with M > 3 vertices each, Cpap(Lor, M1) is
of order O(NM).

Before we can prove this theorem, the following lem-
mas are necessary.

Lemma 3.1 Given two obstacles P and @), then dp €
vert(P) such that cone(p,Q) N P = {p}.

The proof of this lemma can be found in any textbook
on convex analysis. (See for example [11].)

Lemma 3.2 Given a visibility chain V(zo,zr). It
is possible to comnect all neighboring obstacles in
V(zo,xzr) with lines between vertices. Furthermore,
a line connecting P; with P;{1 does not intersect any
other obstacles in V(zg,zF).

Proof of Lemma 3.2: Given P, Piy; € V(xo,zF).
The existence of a vertex p; € wert(P;) such that
cone(p;, Piy1) N P; = {p;} follows from Lemma 3.1.
Thus two vertices in vert(P;+1) can be connected by

lines from p;. That neither of these lines intersect any
other obstacles in V(xo,zr) follows directly from the
definition of the visibility chain. The lemma thus fol-
lows.]

Proof of the Open-Loop Complexity Theorem: The
proof consists of establishing tight bounds on the num-
ber of segments necessary for producing a piecewise
linear path between zy and zp. This path should
furthermore not intersect the interior of any obsta-
cle. To find these bounds is equivalent to finding
Cpap (Lo, M) since the only paths that can be gener-
ated on M, using words in L, are piecewise linear.

Construct a visibility chain from zy to zg, and as-
sume that there are N obstacles in V(zg,zr). The
proof in this case is inductive.

Let N = 2. Since cone(zg, P1) contains at least two
vertices p}, p? in P, these two vertices can be reached
from z(using only one linear segment. By virtue of
Lemma 3.1, there exists another vertex p; € vert(P;)
such that cone(py, P2) N Py = {p1}. From p; two ver-
tices, pi, p2 € vert(P,) can thus be reached using only
one linear segment. It is furthermore possible to reach
p1 from one of pl or p? using at most | (M —1)/2] seg-
ments, where |-| denotes the floor operator.

Now, from zp two vertices in P> can be reached
using one linear segment, and one of these vertices can
be connected to one of p} or p3 using at most M /2|1
segments. Thus the total number of linear segments
necessary is at most 1 + [(M —1)/2] + [M/2] + 1.

Next, assume that the bound holds for the case
when we have k obstacles, and let N = k + 1.
Pick any obstacle P; in the interior of the visibil-
ity chain and form the path connecting the k obsta-
cles in {Pl, vy B4, Py - ,Pk+1} with (k— 1)(1 +
[(M —1)/2]) + | M/2] + 1 segments. From a ver-
tex p;—1 € wvert(P;_1) construct the two supporting
hyperplanes to P; as in Lemma 3.1, and make a sim-
ilar construction from a vertex p; € vert(P;) to Pit1.
By following these hyperplanes from P; ; to P; and
P; 4, it is straightforward to see that we add a total of
1+ | (M —1)/2] segments to our path, that thus consist
of k(1 + (M —1)/2]) + |[M/2] + 1 segments. That
no other obstacles intersect these new line-segments
follows from Lemma 3.2.

If our assumption about the visibility chain is un-
true, we can assume that k obstacles are not in
the chain. Construct the path that connects the
remaining N — k obstacles with zy and zp, using
(N—k—1)1+|(M~-1)/2])+ | M/2]| + 1 segments.
The remaining k obstacles can at most intersect k& of
the segments on the path. Assume that one of the

obstacles, @, intersects the segment between P;, P;yq,
and let p;, p;+1 be two points on these obstacles that
are visible from each other. If we now change our
path so that it connects to these two points instead
of the previous vertices on P;, P;11 that were con-
nected, we have, in the worst case, to add a total of
2 segments to our upper bound. Thus our total num-
ber of segments are at most (N — k — 1)(1 + |(M —
1)/2]) + | M /2| + 1 + 2k, which is less than or equal
to (N —=1)(1+ [(M —-1)/2]) + | M/2] + 1 as long as
M > 3.

That this bound is tight can easily be seen by sim-
ply constructing an environment where it is tight. The
theorem thus follows. u

3.2.2 Closed-Loop Control

We now construct a closed-loop control strategy that
requires a lower number of instructions than what was
necessary in the open-loop case. However, we will not
compute Cpap(Le, M7) exactly. Instead we produce
upper bounds for Cpap (L, M;) that are low enough
to guarantee that Cpap(Ley, M1) < Cpap (Lo, M1).
Before we can compute this bound, some comments
about how M; interacts with the environment must
be made. The contact force from an obstacle, P, in
contact with the robot is parallel to the outward nor-
mal of the surface of the obstacle. However, since no
unique normal vector exists when z € vert(P), we let
the output, ys, take on any value in the normal cone,
ie. ys € Np(x) ={h € R? | (h,y —z) <0, Vy € P}.

Theorem 3.2 (Closed-Loop Complexity) In

a convex world populated by N convex, polygonal
obstacles, an wupper bound on Cpap(Le, M) is of
order O(N).

The proof of Theorem 3.2 is constructive, and be-
fore we can state the proof some preliminary results
about how to construct the appropriate control se-
quence must be established. When the robot is not
in contact with an obstacle, we choose to use k(y) =
k(xF — y1), where k > 0, as in Definition 3.2.

When the robot is in contact with an obstacle it
seems reasonable to follow the contour of that ob-
stacle, as suggested in [7]. The control strategy that
we propose for this guarantees that the robot reaches
the unique global minimum (the point closest to zp
on the obstacle), while committing to a clockwise or
counter-clockwise obstacle negotiation, before it leaves
the contour of the obstacle.

Lemma 3.3 Given a convex obstacle P. A point p €
OP is visible from xF if and only if In € Np(p) such
that (n,xp — p) > 0.

Proof of Lemma 8.3: That p € 0P is not visible from
zF is equivalent to line(p, zp) Nint(P) # (), which in
turn is equivalent to p —p € int(Tp(p)), where Tp(p)
is the tangent cone Tp(p) = {h € R? | h = A(y—p),y €
P, > 0}.

Now, Tp(p) is also the polar cone to Np(p), i.e.
Tp(p) = {s € R* | (s,y) < 0,¥y € Np(p)}. Thus
zp — p € int(Tp(p)) is equivalent to (zp — p,y) <
0,Vy € Np(p). This gives that p is visible from zp if
and only if In € Np(p) such that (n,zr —p) > 0, and
the lemma follows.]

Lemma 3.4 Given a compact, convexr obstacle P,
and a point © ¢ P. Then there exists uniquely a point
p* € P that is the closest point to x in P. Furthermore
p* uniquely satisfies © — p* € Np(p*).

The proof of Lemma 3.4 follows directly from standard
results in convex analysis. (See for example [11].)

It is clear that if the robot moves counter-clockwise
along the contour of a convex obstacle, P, then on the
part of OP that is visible from zy (in the absence of
other obstacles) it holds that Z(zr —y1,y2) < 0 before
p* is encountered, and Z(zp — y1,y2) > 0 after p* is
encountered. Here p* is the point closest to zx on
OP and Z(xp — y1,Yy2) € (—m,] is the angle between
zr — vy and ys, where y; and y, are the position of
M; and the contact force felt by M; respectively. (See
Definition 3.1.)

By using these results we can now propose the fol-
lowing closed-loop control strategy.

Definition 3.4 (Closed-Loop Control) The
closed-loop controller consists of sequences
(ulaklagl);(u23k23§2);(u3;k3a£3)5'"; ’U)h67"6, fOT
i = 1,2,..., the control commands are given by
usj—1 =0, k2j_1(y) = k(zr —y1), and §&35-1(y,t) =0
if (y2,2Fr — y1) > 0 and equal to 1 otherwise.
Furthermore, wus; = 0, koj(y) = cR(—7/2)ys,
and &25(y,t) = 0 if either (y2,xr — y1) < 0 or
Z(xr — y1,¥2) < 0 and equal to 1 otherwise. Here
R(0) is a 2 X 2 rotation matriz, and ¢ > 0.

Proof of the Closed-Loop Control Theorem: The proof
follows from applying the control sequence in Def-
inition 3.4 to M;. The robot thus moves along
line(xg, zr) until an obstacle P is encountered. The
robot then follows the contour of P until (ys,zr —
y1) > 0and Z(zF —y1,y2) > 0, i.e. when the point on

OP closest to zp is encountered. Since the robot al-
ways moves closer and closer to xr, and it has already
been at the point in P closest to g, it never encoun-
ters that obstacle again. So, by not encountering any
obstacle twice, we immediately get an upper bound of
2N + 1 segments, and the theorem follows. m

3.2.3 Discussion

We have now derived results that explain how many
instructions are necessary when instructing a robot
to navigate in cluttered environments populated by
polygonal obstacles. As seen in the previous para-
graphs, such a question can be formulated and solved
quite elegantly when programming robots using mo-
tion description languages, and the difference in oper-
ation between feedback and open-loop can be captured
by restricting the MDLs to have a certain structure.

By summarizing the contributions from Theorems
3.1 and 3.2, the main complexity theorem in this paper
is as follows:

Theorem 3.3 Let the environment be populated by N
disjoint, convex, polygonal obstacles with M wvertices
each. Then Cpap(Lor, M1) is of order O(NM), while
an upper bound on Cpap(Lc, M1) is of order O(N).

What this result means is that when the sensory
information available to us is sufficiently abundant,
fewer instructions are necessary in the feedback case
than in the open-loop case. This way of investigat-
ing the length of the input sequence has implications
for many areas of robotics. For teleoperated robots,
it is clear that a control procedure that requires few
instructions is to prefer since the communication chan-
nels may be noisy and unreliable. This type of argu-
ment also has implications for the way mobile robots
should be programmed. The actual controller is typ-
ically running at a high frequency, while commands
from the motion control program are sent at a much
lower frequency. To use a control procedure that re-
quires few input symbols is thus preferable since it
frees up computational and communication resources
to be used elsewhere in the system.

References

[1] W.L. Baker. Learnig Via Stochastic Approzimation
in Function Space. Doctoral Dissertation, Division of
Engineering and Applied Sciences, Harvard Univer-
sity, Cambridge, 1997.

[2] S.J. Bradtke, B.E. Ydstie, and A.G. Barto. Adaptive
Linear Quadratic Control Using Policy Iteration. In
American Control Conference, pp. 3475-3479, 1994.

[3] R.W. Brockett. On the Computer Control of Move-
ment. In the Proceedings of the 1988 IEEE Confer-
ence on Robotics and Automation, pp. 534-540, New
York, April 1988.

[4] R.W. Brockett. Hybrid Models for Motion Con-
trol Systems. In Perspectives in Control, Eds. H.
Trentelman and J.C. Willems, pp. 29-54, Birkhiuser,
Boston, 1993.

[6] A.E. Bryson and Y.C. Ho. Applied Optimal Control:
Optimization, Estimation, and Control. Hemisphere
Publishing Corporation, New York, 1975.

[6] J. Canny. The Complexity of Robot Motion Planning.
The MIT Press, Cambridge, MA, 1987.

[7] J.E. Hopcroft and G. Wilfong. Motion of Objects in
Contact. The International Journal of Robotics Re-
search, Vol. 4, No. 4, pp. 32-46, 1986.

[8] V. Manikonda, P.S. Krishnaprasad, and J. Hendler.
Languages, Behaviors, Hybrid Architectures and Mo-
tion Control. In Mathematical Control Theory, Eds.
Willems and Baillieul, pp. 199-226, Springer-Verlag,
1998.

[9] T.M. Mitchell. Machine Learning. McGraw-Hill
Series in Computer Science, WCB/McGraw-Hill,
Boston, 1997.

[10] J. Reif and M. Sharir. Motion Planning in the Pres-
ence of Moving Obstacles. IEEE 26th Symposium on
Foundations of Computer Science, pp. 144-154, 1985.

[11] R.T. Rockafellar. Convez Analysis. Princeton Univer-
sity Press, Princeton, NJ, 1970.

[12] M. Sharir and A. Schorr. On Shortest Paths in Poly-
hedral Spaces. STAM Journal of Computer Science,
Vol. 15, No. 1, pp. 192-215, 1986.

[13] C.J.C.H. Watkins and P. Dayan. Q-Learning. Ma-
chine Learning, Vol. 8, No. 3/4, pp. 257-277, May
1992.

