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Abstract. This paper considers the problem of determining optimal switching times at which
mode transitions should occur in multi-modal, hybrid systems. It derives a simple formula for
the gradient of the cost functional with respect to the switching times, and uses it in a gradient-
descent algorithm. Much of the analysis is carried out in the setting of optimization problems
involving fixed switching-mode sequences, but a possible extension is pointed out for the case
where the switching-mode sequence is a part of the variable. Numerical examples testify to the
viability of the proposed approach.
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I. INTRODUCTION

Switched dynamical systems are often described by differential inclusions of the form

2(t) € {galx(t), u(t))}aca, (1)

where z(t) € R", u(t) € R*, and {g, : R""™* — R"},c4 is a collection of continuously
differentiable functions, parameterized ly belonging to some given set. The timet is
confined to a given finite-length intervél, 7. Such systems arise in a variety of applications,
including situations where a control module has to switch its attention among a number of
subsystems [12], [15], [19], or collect data sequentially from a number of sensory sources [4],
[6], [11]. A supervisory controller is normally engaged for dictating the switching law, i.e. the
rule for switching among the functiong, in the right-hand side of Eq. (1).
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Recently, there has been a growing interest in optimal switching time control of such hybrid
systems, where the control variable consists of a proper switching law as well as the input
function u(t) (see [3], [5], [9], [10], [16], [17], [18], [20]). Ref. [3] establishes a framework for
optimal control, and [16], [17], [18] present suitable variants of the maximum principle to the
setting of hybrid systems. Refs. [1], [2], [9], [14] consider piecewise-linear or affine systems.
The special case of autonomous systems, where the:«tt@nnis absent and the control variable
consists solely of the switching times, is considered in [9], [11], [21], [22]. In particular, Xu
and Antsaklis [21], [22] consider general nonlinear systems, and they have developed nonlinear-
programming algorithms that compute the gradient and second-order derivatives of the cost
functional. This paper, whose preliminary version has appeared in [8], also falls in this category.

Ref. [21] provides the starting point for the results presented in this paper, as we initially
consider a similar problem, where the sequence of switching functions as well as the number of
switching times are fixed. We develop a simpler formula than the one in [21] for the gradient
of the cost functional, and use it in a gradient-descent algorithm. Finally, we suggest a possible
extension of the algorithm to a class of problems where the number of switching times as well
as the switching-mode sequence is a part of the variable parameter.

Section Il formulates the problem and derives a formula for the gradient of its cost function.
Section Ill derives an optimality condition having an intuitive appeal, and uses it to define a
gradient-descent algorithm. Section IV points out a possible extension to more general scheduling

problems, and Section V presents numerical experiments. Finally, Section VI concludes the paper.

Il. PROBLEM FORMULATION AND GRADIENT FORMULA

Consider an autonomous switched-mode dynamical system where the initiakgtate™
and the final timél" > 0 are given. The functiong, in the right-hand side of (1) correspond to
the modes of the system, and hence will be referred to amtual functionsSuppose that the
system switches between the modes (and their corresponding modal functions) a finite number
of times, NV, in the time-intervall0, 7']. Let us denote the switching times by, i = 1,..., N,
in nondecreasing order, and further define= 0 and 7y, := T. Then according to Eq. (1)
and since the system is autonomous, for evegy{1,..., N + 1} there is an associated index

term a(i) € A such that
T = Gag) (), for all t € [1;,_1, 7], i1=1,...,N+1, (2)
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where at the boundary points ; andr; the derivative termi(t) is replaced by the appropriate
one-sided derivative. Note that the state trajectofy) is thus well defined and continuous
throughout the interval0, T]. Furthermore, we call the index-sequenie(i)} 1" the modal
sequenceand denote it by. Let L : R” — R be a given cost function, and define the total cost
J by

J = /0 L(x())dt. 3)

We make the following assumption concerning the modal functipnand the cost functiord..
Assumption 2.1.(i). The functionsg, and L are twice continuously differentiable a&i'.

(i) There exists a constarty, > 0 such that, for every € R", and for alla € A,
lga(2)l] < Ko(llx][ +1). (4)

Observe that/ is a function of the modal sequenee= {a(i)}Y1* as well as the switching
timesty, ..., 7. In this and the next sections we assume a fixed modal sequesice consider
J as a function of the switching times. To simplify the notation, let us define the funcfions

i=1,...,N+1, by fi = go)- Then, Eq. (2) assumes the following form,
z(t) = fi(z(t)), forall t € [r,_1,7], i=1,...,N+1, (5)

with the given initial conditionz(0) = z,. Furthermore, let us denote the set of switching times
by 7 in a vector form, i.e.7 := (ry,...,7~)T € RY. ThenJ is a function of7 via Egs. (5) and
(3), and hence it is denoted h¥ 7). We consider the following optimization problem, denoted
by P,.

P,: Minimize J(7) subject to the inequality constrains=7 <7 < ... <7y <7y41 =T.

This section derives a formula for the gradi@nt/(7), which will be used later in a gradient-
descent algorithm. We first need a technical, preliminary result, Lemma 2.1, whose description
and statement follow. Recall that the final tinig, is fixed. Given constant§’ > 0, K; > 0,

K, > 0, and a convex compact sEtC R", we denote byH[C; K1; K»;T'] the set of Lebesgue
measurable functions : R™ x [0, 7] — R™ having the following four properties:

1) ||h(z,t)|| < C for every(z,t) € I x [0,T],

2) h(z,t) is twice continuously differentiable im € R" for all ¢ € [0, T,

3) ||h(wa,t) — h(z1,t)|| < Ki||ze — x4]| fOr everyx, € T, 2, € T, andt € [0, T],

September 1, 2005 DRAFT



4) || (2o, t) — 9(w1,t)|| < Ko||zo — x| for everyay €T, , € T, andt € [0, 7.2
We remark that the definition off [C; K;; K»; '] does not require continuity of(x,t) in its
second variablet,.

Now fix constants” > 0, K; > 0, and K5 > 0, and a convex compact sétC R", and let
hy € H[C; Ky; Ko;T] and hy € H[C; K7; K3;T'| be two given functions. Let(t) and z5(t)
be defined by the respective differential equatiaingt) = hi(z1(t),t) and s = ho(xs(t),1),

€ [0,7], with a common initial conditiony;(0) = 25(0) = x, € I'. Define Ah(z,t) :=
ho(z,t) — hy(z,t) and Ax(t) := z5(t) — x1(t). Let ®(¢,7) € R™™™ denote the state transition
matrix of the linearized system = 9 (xz;(t),t)z.

The following lemma essentially has been proved in [13], Lemma 5.6.7 and in the proof of
Theorem 5.6.8. The setting there is slightly different from ours, but the underlying arguments
are identical. A detailed proof can be found in [7].

Lemma 2.1.There exist constant& > 0 and X > 0, depending only o', K, K», andTl’, such
that, for allh, € H[C; K1; K3;T'] and hy € H[C; K1; K»; T with the property that:;(¢) € T

andz,(t) € T for all ¢ € [0,T], the following two inequalities are in effect:

1Az < K / [ A (), 1) |dt, (6)
0
and
1Az(E) —/0 B(t, 7)Ah(ay (7, 7)dr|| <
) A
SK</ | Ak (e). 1)) /\\Ahxl £)ldt + /Hﬂxl )llde). (@)
Proof. See [13], Ch. 5.6.2. n

As an application of this lemma, consider a family of functiohsg, € H(C; Ky; Ky; 1),
parameterized by € [0, \) for some)\ > 0, for givenC > 0, K; > 0, K, > 0, and a compact
setl' C R™. Let z,(¢) be defined by the differential equatian = hy(zy,t), t € [0,7T], with
a common initial conditioncy € I'. For the special case where= 0 we will use the notation
h(z,t) = ho(z,t) andz(t) = xo(t), and we define\hy(x,t) = hy(x,t)—h(x,t). Fix 1o € (0,7T)
such thatr, + A < T, and letg : R* — R” be a function satisfying Assumption 2.1. Suppose

The norm in the left-hand side of the inequality is the induced matrix norm.
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that Ah,(z,t) has the following form,
, i <t<1m+A
NN R (8)
0, otherwise.

Let L : R® — R be a function satisfying Assumption 2.1(i) (i.e., it is twice continuously
differentiable), and define the functioh: [0, \] — R by

J0) = / L(zx(t))dt. ©)

Proposition 2.1.1f x,(t) € T for everyt € [0, T] and for all\ € [0, \), then.J has the following

right derivative at O,

B0 = vl ala(r0)) (10)
where the costatg(t) satisfies the differential equation
oh T 0 T
3(0) = — (o). 0) pe) — (S2) 1)

with the boundary conditiop(7") = 0.
Proof. Fix A € [0,}), and defineAJ, = J(\) — J(0). By Eq. (9), AJy = [ (L(zx(t)) —
L(z(t)))dt, and by the mean value theorem,

T
L
0
for somes(t) € [0, 1]. By Assumption 2.1, there exists; > 0 such that
oL oL
15, (@) + s@t)Axa(t)) = - (z(®))l] < Ksl|Azr(@)]]. (13)
Next, by lemma 2.1 (Eq. (6)), there exisk§, > 0 such that, for alk € [0, T7,
T
lAns(e)l] < Ko [ [1Aks(ole). )i (14)
0
By the definition ofAh, (Eg. (8), there existg(; > 0 such that
T
/ [|Ahy(x(t),t)]|dt < K3\, (15)
0
and .
OAh
/ 1= 2x(t), t)||dt < KA. (16)
O x
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Combining (13), (14) and (15) we obtaif}( 2= (x(t) + s(t)Aza(t)) — 2&(2(t))) Az ()| <

Ks||Azy(1)||* < K3KiK2)N%. By defining Kg = K3 K7 K2T, we have that,

T 0L oL
/0 ||(%(x(t) + s(t)Azp(t)) — %(x(t)))Ax,\(t)Hdt < Kghi (17)
Consequently, and by (12), we have that
AJy, = %(x(t))AxA(t)dt + o(N), (18)
0 Xz

whereo(\)/A — 0 asA — 0. Next, applying Lemma 2.1 (Eq. (7)) withy, = h, 1 = x, hy = hy,
andz, = z,, it follows (by Egs. (7), (15) and (16)) thakx,(¢) fo (t, 7)Ahy(z(T),T)dT =
o(\), where the functioro()\) is independent of € [0, 7] or of A € [0, \). Consequently, and
by Eqg. (18), we have that

AJy = i g—i(x(t))/Otd)(t,T)Ah,\(x(T),T)det+0()\). (19)

Changing the order of integration in (19) we obtain,
T oL
AJy = / / %(x(t))¢(t,7)thh)\(x(7'), T)dT + 0o(A). (20)
0 T

Define the costatp(7) € R" by p(7)T = fT &

T Oz

thatp(r)”" = —p(7)" 5% (x(7),7) — $&(2(7)), and hence Eq. (11) is in effect; and ajg@")” = 0.

It now follows from Eq. (20) thatA.J, = fO (1)TAhy(x(7), 7)dT + o(\). Hence, by Eqg. (8),
AJy = fTZOJ”\p(T)Tg( (7))dT + o()). Dividing by A and taking the limit\ — 0, and noting

that p(7)"g(z(7)) is a continuous function of, we obtain thatZ (0) = p(ro)" g(z(7)). This

(x(t))®(t, 7)dt. Taking derivative, it is apparent

completes the proof. n

We remark that the left derivative has the same formula, as can be seen by repeating the
arguments of the proof of Proposition 2.1 with minor modifications.

Consider the functior/(7) as defined by Egs. (5) and (3). Define the feasible set, denoted
by A, by A:={7=(r,...,70) T :0=79 <7y < ... <7y < 7y41 = T}. For everyr € A,

define the costatg(t) € R™ by the differential equation

. Ofiri, \ . OL, W7 .
p:_( a; ($7t)) p_(%(x)) ) tE[Ti7Ti+1]7 Z:NvN_]-a"'707 (21)

with the boundary conditiop(7") = 0.

Proposition 2.2. Suppose that Assumption 2.1 is in effect. For every poim the interior of
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A, and for alli = 1,..., N, the derivativeZZ(7) has the following form

) = o) (el — (o). @2)

Proof. Define the functionh(z,t) : R" x [0, 7] — R"™ by h(z,t) = f;(x) for all t € [r,_1, 7).
Theni = h(z,t) with the initial conditionz(0) = x,. By Assumption 2.1, there exists a convex
compact sef' C R" such thate(t) € T for every feasibler = (4,...,7x)" and for allt € [0, T7.
Moreover, by the same assumption there exist constants 0, K; > 0, and K5 > 0, such
that h(z,t) € H[C; Ky; Ky; T for all 7. Giveni € {1,...,N} and X € [0,7;41 — 7;), define
Ahy(z,t) as in (8), withr; instead ofry, and withg(z) = f;(x) — fir1(x). An application of

Proposition 2.1 and the remark that follows it now vyields (22). n

We observe that the derivativeé//dr; may not be well defined on the boundary &f The
reason is that, if;,; = 7;, then changing these variables in a way that swaps their order leaves
unclear the identity of the modal function between them and hence the right-hand side of Eg.
(22). However, the expression in the right-hand side of (22) is defined on the boundary of
where, in the event that,,; = 7;, the domain of the modal functiofi,; is the single point
Ti+1 = 7;. Let us define, for every € A, by ¢;(7) the right-hand side of Eqg. (22), and define
q(7) == (q1(7),...,qn(7))T € RN. Then the functionr — g(7) is well defined throughout
A. Note thatg(7) = VJ(7) in the interior of A. Furthermore, it is evident that the directional
derivative of J at 7 € A in a feasible directiorh: is given by the inner product ¢(7),h >.

This fact will be used in the analysis carried out in the next section.

I1l. OPTIMALITY CONDITION AND AN ALGORITHM

This section derives a special form of the Kuhn-Tucker optimality condition that is based on
the structure of the constraint s&t and uses it to compute a descent direction. The analysis
requires the following result concerning continuity Gt/ (7).

Proposition 3.1.The functiong(7) : A — R is Lipschitz continuous throughou.

Proof. Given 7 € A, denote byz(¢;7) and p(t;7) the state and costate variables defined by
Egs. (5) and (21), respectively, with the switching-time vectorBy Assumption 2.1, there
exist compact set§, C R” andI', C R" such thatz(¢,7) € I', andp(t;7) € I', for every

t € [0,7] and for everyr € A. Consider two points/(1) = (r1(1),...,7x(1))" € A and
7(2) = (11(2),...,75(2))T € A. By Lemma 2.1 (Eq. (6)) applied first to (Eq. (5)) and then

September 1, 2005 DRAFT



to p (Eg. (21)), there exists a constaiAt; > 0 such that, for every (1) and 7(2), and for
all ¢ € [0,7], |la(t;7(1)) — a(t;7(2))]] < Kill7(1) = 7@2)]], and |[p(#; 7(1)) — p(t;7(2)]] <
K,||7(1) — 7(2)||. Next, by (21) and Assumption 2.1, there exisfs > 0 such that, for every
T e A, ||p(t;7)|| < K, for everyt € [0,7], and hence, for every, € [0,7] andt, € [0,T],
llp(t1;7) — p(t2; T)|| < Kalt; — to|. Consequently, for every = 1,..., N, we get, after some
algebra,

lp(7i(1), 7(1)) = p(1i(2), 7RI < (K1 + K)[[7(1) = 7(2)]]. (23)

This establishes that the mapping— p(;) is Lipschitz continuous in;. A similar (and actually,
simpler) argument applies to the Lipschitz continuity of the functipa- z(7;). Consequently,

and by (22),¢;(7) : A — R" is a Lipschitz-continuous function. This completes the prook

We next derive a special form of the Kuhn-Tucker optimality condition. Fix a point
(11,...,7v)T € A, and recall that we defined, := 0 andry,; = 7. If 7 is on the boundary
of A thent; = 7,,; for somei = 0,...,N. To account for this case we define, for all
i €{0,..., N+1}, the integer-quantities(i) andn(i) as follows:k(i) := min{k <i: 7, = 71},
andn(i) := max{n > i: 7, = 7;}. In other words;; = 7, for all j € {k(3),...,n(:)}; if 7, >0
thenT.)_1 < Ty and if 7, < T thent,i) < 7.u)1- Furthermore, defing;(7) := Z;‘:k(i) q;(7)
and R;(7) := Z;‘S} ¢;(7). The following result characterizes Kuhn-Tucker points.

Proposition 3.2.Let 7 = (7y,...,7y)’ be a local minimum forP,. Then, for everyi €
{1,...,N}, r;(7) <0 unlessr; =0, and R;(7) > 0 unlessr; = T.

Proof. Let 7 = (7,...,7n)! be a local minimum forP,. Considerk € {1,...,N} and

n € {k,..., N} such that: (i)r, = 7,,; (ii) either 7, = 0 or 7,_; < 73; and (iii) 7, < T,41. We
will prove that R;(7) > 0 for all i = k,...,n; since similar arguments apply to proving the
reverse inequality regarding, this will complete the proposition’s proof.

If & = n then certainlyg,(7) = 0 if 7. > 0 and ¢(7) > 0 if 7, = 0, and henceRy(7) =
qx(T) > 0 in either case. Next, consider the case where: n. For all j = k,...,n — 1,
sincet; = 7,41, there exists a Lagrange multiplie; > 0 for the constraint; — 7;,,; < 0.
Moreover, if 7, = 0 then there exists a Lagrange multiplier > 0 for the constraint-7;, < 0.
From the Kuhn-Tucker optimality condition, it follows that @).(7) + A\, = 0 if 7, > 0, and
Q(T) + X — e =0 if 7, = 0; (ii) ¢;(7) — Aj1 +A;=0forall j=k+1,...,n—1; and (iii)

Gn(T) — A\p_1=0. Fixi € {k,...,n}. Summing up these equations fpr= i,...,n, we obtain:
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() for i > k, R;(7) = X\;_1; and (i) fori = k, Rx(7) = 0 if 7, > 0, and Ry (7) = py if 7, = 0.

In any event,R;(7) > 0. "

Corollary 3.1. In the setting of Proposition 3.2, ify;)-1 < Tk and 7,4y < Tua)41, then
Rig(i) (T) = (i) (T) = 0.
Proof. Follows immediately from Proposition 3.2, sin€&;)(7) = ,,x;)(7). "

In order to solve the problen®,, to the extent of computing a point satisfying the above
optimality condition, we use a gradient-projection algorithm with Armijo step sizes. Given a

point 7 € A, let U'(7) denote the set of feasible directions from the painhamely,
U(7) :={h eRY | for some ¢ >0, and for all ¢ € [0,(), 7+ Che A}

Let h(7) denote the projection of the vecterg(7) onto ¥ (7). The following algorithm uses the
Armijo step sizes in this direction.

Algorithm 3.1 Gradient-Projection Algorithm with Armijo Step Sizes.

Given: Constantsy € (0,1), 5 € (0,1), andz > 0.

Initialize. Choose an initial point, € A. Seti = 0.

Step LIf 7 + zh(%) ¢ A then computer,., := max{z > 0 | 7 + zh(7;) € A}; otherwise set
Zmax = Z-

Step 2.Compute the step siz& by
G o= max{z = ze - 8% k>0 | J(T+2h(F) - J(7) <az<h(R),q7) >} (24)
Step 3.Set7,,; :=7; + (;h(7), seti =i + 1, and go to Step 1. -

Note that, if7; + zh(7;) € A thenz,... = z, and if 7, + Zh(7;) ¢ A thenz,,,, is the maximum
step size: for which 7;+zh(7;) € A. Moreover, the step size computed in Step &, iS$= 24z -3
for some integek > 0. Ref. [13] contains an analysis of this algorithm and various alternative
versions thereof. In particular, it proves that £i)7;) indeed is a descent direction from i.e.,
J(Ti1) < J(73); (i) the step size(; is nonzero as long ag does not satisfy the Kuhn-Tucker
optimality condition (and hence the optimality condition established in Proposition 3.2), and
(iii) every accumulation point of a sequenge; }°,, computed by the algorithm, satisfies the
optimality condition. Therefore, a practical stopping rule is to end the algorithm'’s run at a point
7; whenever||h(7;)|| < e for an a-priori chosen value of > 0. Moreover, the algorithm is

stable in the sense that it will converge from every starting point, and it has a linear asymptotic
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convergence rate. Ref. [13] also gives recommendations for the choiegg @ndz. For details,
please see pp. 30-31 of [13].

Finally, a word must be said about the computation@f) for a givent := (4, ..., 7y)7 € A.
Let us define &lockto be a contiguous integer-sgt, ..., n} C {1,..., N} such thatr,, = 7
(and hencer; = 7, for all i € {k,...,n}). Observe that every set of contiguous integers that is
a subset of a block is also a block. Furthermore, we say that a blatlexsmalif no superset
thereof is a block. Obviously, the sét, ..., N} is partitioned into disjoint maximal blocks in
a way that depends on

The following computation ofi(7) := (hi(7), ..., hx(7))T is done one-block-at-a-time in the
following manner. Let{k, ..., n} be a maximal block associated with
Algorithm 3.2. Procedure for computing,(7), i = k, ..., n.

Step 0.Set? = k.
Step 1.Computer,,,, defined by

maxr = ﬁ, o :
r max{-— A | n}
Definem :=max{i =k,...,n : =15 = Tz}

Step 2.For alli € {¢,...,m}, defineh;(7) by —r,,.. unless either (iy,, = 0 andr,,,, > 0, or
(i) 7, =T andr,,., < 0. In either case (i) or (ii), sek;(7) = 0.

Step 3.f m = n, exit. If m < n, setl :=m+ 1 and go to Step 1. n

Proving that the resulting vectdr(7) indeed is the projection of-g(7) onto ¥(7) is fairly
straightforward once we realize that that projection is the vectdr(in) of least distance from
—q(7). The proof will lead us astray from the main topic of this paper, and hence will not be
presented here. We point out, however, that the optimality condition established in Proposition
3.2 has the following associated intuitive geometric appeal. If the optimality condition is satisfied,
then obviouslyh(7) = 0. If it is not satisfied, then Algorithm 3.2 indicates which variabtgs
i € {k,...,n}, should be increased and which ones should be decreased; in other words, a

descent direction for clearly emerges.

IV. INSERTING SWITCHING MODES TO A GIVEN SCHEDULE

The optimization problem that we consider is greatly complicated if the modal schedule

becomes part of the variable parameter. In this case we have a mixed integer problem which
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may be NP hard. However, it appears to be possible to overlay a continuous structure over the
parameter space, and hence compute sensitivity measures (gradients) and use them in algorithms
that seek local minima. This section describes such a continuous structure as applied to the
insertion of a new mode into an existing schedule. For the sake of clarity we present only a
simple case and numerical results therewith, while deferring the general case and its analysis to
a future publication.

Fix a modal sequence = {«(i)} 1! and the associated switching-time vectoe (r1,...,7x)".
Recall that the state trajectofy:(¢)} evolves according to Eq. (2), and by definifig= ga(,
Eqg. (2) is transformed into Eq. (5). Ldi(¢)} be the costate trajectory defined by Eq. (21).
Now fix a € A, 7 € (0,T), and X > 0 such thatr + A\ < T', and consider inserting the modal
function g, in the time-interval[r, 7 + A]. This insertion will result in a modification of the
modal sequence by adding to it the indexv. Recall the cost functional as defined by Eq.
(3), and consider it as a function af hence to be denoted by(\). Then the following is an

immediate corollary of Proposition 2.1.

Proposition 4.1.Let 7 € [r;_;,7;) for somei € {1,..., N + 1}. Then, the one-sided derivative
J-(0) has the following form,
dJ
—=(0) = p(7)"(9a(x(7)) = gai(2(7))). (25)
d\
Proof. Follows directly from Proposition 2.1. n

If the above insertion takes place at a point (7;,_1, 7;) then, for\A < 7; — 7, the switching-
time vector become¢r,..., 7 1, 7,7+ \,7,...,7v)T € RVT2, and the associated, modified
modal sequence becomésa(1),...,a(i),a, a(i), (i + 1),...,a(N + 1)}. If 7 = 7,4, then
only one switching time is appended at time; + A, and the modal functiog,, is inserted in
the interval[r;_1, ;-1 + A), but Eq. (25) holds true. We later will denote the tey##-(0) by
Cg‘i—ﬂ(o; 7) in order to emphasize its dependence on the insertion poiife point out that when
the above term has to be computed for a number of insertion pojnise costate trajectory
need be computed only once. Proposition 4.1 and the sensitivity formula (25) will be used in
the next section for computing insertion points.

It is possible to consider inserting multiple switching modes at a poirt (7;,_;,7;) and
extend Proposition 4.1 in the following way. FiXj) € A, j = 1,...,m, for somem > 0; fix

7 € (0,7) andX > 0 such thatr + A < T'; and fixa; > 0 such thath.V:1 a; = 1. Now insert the
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modal functionsysy), . . ., gsmm), in the indicated order, in successive time-intervals of respective
durationsia;, j = 1,...,m, starting withgg) at time 7. Consider the cost functional as a
function of A > 0.

Proposition 4.2. The one-sided derivativgli 0) has the following form,

dJ

Z2(0) = p(r)" (argsn (a(r +Z = ;1) (956) (7)) = 93151 (7)) = @i (2(7))).
(26)

Proof. Follows directly from Proposition 2.1 and the chain rule. n

V. NUMERICAL EXAMPLE

To test the viability of the gradient formula, we apply Algorithm 3.1 to a simple problem.
Admittedly, the problem is but of an academic nature, but it highlights the salient features of
our approach.

The system in question alternates between two madesle 1and mode 2 Mode 1 has the
dynamic representation by the equatidn= A;x, and mode 2 is represented by the equation
@ = Ayx; herex € R?, and A; and A, are2 x 2 matrices. Letd := {1,2}, and letg,(z) =
Ajx and go(x) = Asz. The time interval is[0, 7] with 7" = 10, and the initial condition is
zo = x(0) = (1,1)T. The cost criterion (functional) ig = Hx( )||?dt, and the variable
parameter consists of the switching sequence (including the number of switches) between the

modes. The matriced; and A, are the following,

A = -0 , and Ay = b
1 2 1 -2
We observe that each one of the matrices has one positive eigenvalue and one negative eigenvalue,
and the respective eigenvectors of the negative eigenvalues do not coincide. Consequently, the
switching is used to manage the unstable parts of the state trajectories. In fact, given the "energy”
cost functional, we expect the optimal switching schedule (if an optimum exists) to frequently
switch between the two modes.
The algorithm for minimizing/J alternates between two phases, corresponding to its Step 1
and Step 2, below.
Algorithm 5.1.

Given: A grid © := {6,, ¢ = 0,1,..., L} of equally-spaced points covering the inter{@l77],
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and ane > 0.

Step O.Let o := {1}, namelyi = A,z for all t € [0, 7] and there are no switching times. Set
N =0.

Step 1.For everyj =0,..., N, do (i) and (ii) as follows:

(i) Compute a point); € © such that

dJ
9, € argmin{d)\—+(0;7') | T€eON[r,T41)} (27)
dJ

(i) If =55(0;6;) < 0 then modify the switching schedute by adding two switching points at
¢; and the switching model; m.q 2) between them, and séf = IV + 2. On the other hand,
if 42(0;6,) = 0, then stop and exit.

Step 2.Use Algorithm 3.1 to solve the problei, to the extent of computing a poirt such
that ||a(7)] < e.

Step 3.Go to Step 1. [

We chose: to bee = 0.3, and the grid® consisted of 200 equally-spaced points in the interval
[0, 10]. Also, whenever we added the two switching times in Step 1 we separated them by 0.02,

i.e., one was at a poirft; and the other was @02 to the right of6;.

lteration (k) 7(k) J(FE) | IV (@)
(*) - 113.74 -
0 (4.25, 4.27) 112.32 | 99.94
1 (3.70, 4.82) 59.91 | 82.67
9 (2.01, 7.11) 24.53 0.18
(**) (0.45, 0.47, 2.01, 4.40, 4.42, 7.11, 8.60, 8.62p4.45 3.58
17 (0.22, 0.90, 2.05, 3.82, 5.05, 7.16, 8.05, 9.16P2.40 0.26

Table 1: Numerical Results

Numerical results are shown in Table 1. In the first row, indicated(-bythere were no
switching times and the only mode wasz. Step 1 then computed the switching points at
4.25 and 4.27. Thence, the algorithm considers the modal sequeneel, 2,1 having two
switching times, and in Step 2 involving 9 iterations of Algorithm 3.1, the cost is reduced from
112.32 to 24.53 while the gradient’s magnitude declines from 99.94 to 0.18. At this point the
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algorithm reverted to step 1 and inserted the complementary mode at each one of the three
modal domains, with the resulting switching schedule shown in the row marked by (**). The
algorithm then continued in Step 2 untiv (.J(7))|| = 0.26, for a cost reduction from 24.45 to
22.40. At this point (row 17) Step 1 attempted to insert a complementary mode at each one of
the 9 modal domains. The minimizers of the right-hand side of (25) ranged between -0.42 and
-0.11, deemed too small to proceed. It is for this reason that the algorithm’s run was stopped

after iteration 17.

VI. CONCLUSIONS

This paper concerns an optimal control problem defined on switched-mode dynamical systems,
whose variational parameter consists of the switching schedule. It first derives a formula for the
gradient of the cost functional with respect to a given sequence of switching times. It then
extends the formula, based on its special structure, to the directional derivative of the cost
functional with respect to the length of a time interval at which additional switching modes can
be inserted. The approach described in this paper holds out promise of computing suboptimal
solutions to optimal scheduling problems, including the determination of modal sequencing, in
hybrid dynamical systems. Numerical examples testify to the potential viability of the proposed

approach.
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