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Abstract. This paper considers the problem of determining optimal switching times at which

mode transitions should occur in multi-modal, hybrid systems. It derives a simple formula for

the gradient of the cost functional with respect to the switching times, and uses it in a gradient-

descent algorithm. Much of the analysis is carried out in the setting of optimization problems

involving fixed switching-mode sequences, but a possible extension is pointed out for the case

where the switching-mode sequence is a part of the variable. Numerical examples testify to the

viability of the proposed approach.
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I. I NTRODUCTION

Switched dynamical systems are often described by differential inclusions of the form

ẋ(t) ∈ {gα(x(t), u(t))}α∈A, (1)

where x(t) ∈ Rn, u(t) ∈ Rk, and {gα : Rn+k → Rn}α∈A is a collection of continuously

differentiable functions, parameterized byα belonging to some given setA. The time t is

confined to a given finite-length interval[0, T ]. Such systems arise in a variety of applications,

including situations where a control module has to switch its attention among a number of

subsystems [12], [15], [19], or collect data sequentially from a number of sensory sources [4],

[6], [11]. A supervisory controller is normally engaged for dictating the switching law, i.e. the

rule for switching among the functionsgα in the right-hand side of Eq. (1).
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Recently, there has been a growing interest in optimal switching time control of such hybrid

systems, where the control variable consists of a proper switching law as well as the input

function u(t) (see [3], [5], [9], [10], [16], [17], [18], [20]). Ref. [3] establishes a framework for

optimal control, and [16], [17], [18] present suitable variants of the maximum principle to the

setting of hybrid systems. Refs. [1], [2], [9], [14] consider piecewise-linear or affine systems.

The special case of autonomous systems, where the termu(t) is absent and the control variable

consists solely of the switching times, is considered in [9], [11], [21], [22]. In particular, Xu

and Antsaklis [21], [22] consider general nonlinear systems, and they have developed nonlinear-

programming algorithms that compute the gradient and second-order derivatives of the cost

functional. This paper, whose preliminary version has appeared in [8], also falls in this category.

Ref. [21] provides the starting point for the results presented in this paper, as we initially

consider a similar problem, where the sequence of switching functions as well as the number of

switching times are fixed. We develop a simpler formula than the one in [21] for the gradient

of the cost functional, and use it in a gradient-descent algorithm. Finally, we suggest a possible

extension of the algorithm to a class of problems where the number of switching times as well

as the switching-mode sequence is a part of the variable parameter.

Section II formulates the problem and derives a formula for the gradient of its cost function.

Section III derives an optimality condition having an intuitive appeal, and uses it to define a

gradient-descent algorithm. Section IV points out a possible extension to more general scheduling

problems, and Section V presents numerical experiments. Finally, Section VI concludes the paper.

II. PROBLEM FORMULATION AND GRADIENT FORMULA

Consider an autonomous switched-mode dynamical system where the initial statex0 ∈ Rn

and the final timeT > 0 are given. The functionsgα in the right-hand side of (1) correspond to

the modes of the system, and hence will be referred to as themodal functions. Suppose that the

system switches between the modes (and their corresponding modal functions) a finite number

of times,N , in the time-interval[0, T ]. Let us denote the switching times byτi, i = 1, . . . , N ,

in nondecreasing order, and further defineτ0 := 0 and τN+1 := T . Then according to Eq. (1)

and since the system is autonomous, for everyi ∈ {1, . . . , N + 1} there is an associated index

term α(i) ∈ A such that

ẋ = gα(i)(x), for all t ∈ [τi−1, τi], i = 1, . . . , N + 1, (2)
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where at the boundary pointsτi−1 andτi the derivative termẋ(t) is replaced by the appropriate

one-sided derivative. Note that the state trajectoryx(t) is thus well defined and continuous

throughout the interval[0, T ]. Furthermore, we call the index-sequence{α(i)}N+1
i=1 the modal

sequence, and denote it byσ. Let L : Rn → R be a given cost function, and define the total cost

J by

J =

∫ T

0

L(x(t))dt. (3)

We make the following assumption concerning the modal functionsgα and the cost functionL.

Assumption 2.1.(i). The functionsgα andL are twice continuously differentiable onRn.

(ii) There exists a constantK0 > 0 such that, for everyx ∈ Rn, and for allα ∈ A,

||gα(x)|| ≤ K0(||x||+ 1). (4)

Observe thatJ is a function of the modal sequenceσ = {α(i)}N+1
i=1 as well as the switching

timesτ1, . . . , τN . In this and the next sections we assume a fixed modal sequenceσ and consider

J as a function of the switching times. To simplify the notation, let us define the functionsfi,

i = 1, . . . , N + 1, by fi = gα(i). Then, Eq. (2) assumes the following form,

ẋ(t) = fi(x(t)), for all t ∈ [τi−1, τi], i = 1, . . . , N + 1, (5)

with the given initial conditionx(0) = x0. Furthermore, let us denote the set of switching times

by τ̄ in a vector form, i.e.,̄τ := (τ1, . . . , τN)T ∈ RN . ThenJ is a function ofτ̄ via Eqs. (5) and

(3), and hence it is denoted byJ(τ̄). We consider the following optimization problem, denoted

by Pσ.

Pσ: Minimize J(τ̄) subject to the inequality constraints0 = τ0 ≤ τ1 ≤ . . . ≤ τN ≤ τN+1 = T .

This section derives a formula for the gradient∇J(τ̄), which will be used later in a gradient-

descent algorithm. We first need a technical, preliminary result, Lemma 2.1, whose description

and statement follow. Recall that the final time,T , is fixed. Given constantsC > 0, K1 > 0,

K2 > 0, and a convex compact setΓ ⊂ Rn, we denote byH[C; K1; K2; Γ] the set of Lebesgue

measurable functionsh : Rn × [0, T ] → Rn having the following four properties:

1) ||h(x, t)|| ≤ C for every (x, t) ∈ Γ× [0, T ],

2) h(x, t) is twice continuously differentiable inx ∈ Rn for all t ∈ [0, T ],

3) ||h(x2, t)− h(x1, t)|| ≤ K1||x2 − x1|| for everyx1 ∈ Γ, x2 ∈ Γ, andt ∈ [0, T ],
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4) ||∂h
∂x

(x2, t)− ∂h
∂x

(x1, t)|| ≤ K2||x2 − x1|| for everyx1 ∈ Γ, x2 ∈ Γ, andt ∈ [0, T ].1

We remark that the definition ofH[C; K1; K2; Γ] does not require continuity ofh(x, t) in its

second variable,t.

Now fix constantsC > 0, K1 > 0, andK2 > 0, and a convex compact setΓ ⊂ Rn, and let

h1 ∈ H[C; K1; K2; Γ] and h2 ∈ H[C; K1; K2; Γ] be two given functions. Letx1(t) and x2(t)

be defined by the respective differential equations,ẋ1(t) = h1(x1(t), t) and ẋ2 = h2(x2(t), t),

t ∈ [0, T ], with a common initial condition,x1(0) = x2(0) = x0 ∈ Γ. Define ∆h(x, t) :=

h2(x, t) − h1(x, t) and ∆x(t) := x2(t) − x1(t). Let Φ(t, τ) ∈ Rn×n denote the state transition

matrix of the linearized systeṁz = ∂h1

∂x
(x1(t), t)z.

The following lemma essentially has been proved in [13], Lemma 5.6.7 and in the proof of

Theorem 5.6.8. The setting there is slightly different from ours, but the underlying arguments

are identical. A detailed proof can be found in [7].

Lemma 2.1.There exist constantsK > 0 andK̄ > 0, depending only onC, K1, K2, andΓ, such

that, for all h1 ∈ H[C; K1; K2; Γ] and h2 ∈ H[C; K1; K2; Γ] with the property thatx1(t) ∈ Γ

andx2(t) ∈ Γ for all t ∈ [0, T ], the following two inequalities are in effect:

||∆x(t)|| ≤ K

∫ T

0

||∆h(x1(t), t)||dt, (6)

and

||∆x(t)−
∫ t

0

Φ(t, τ)∆h(x1(τ), τ)dτ || ≤

≤ K̄
( ∫ T

0

||∆h(x1(t), t)||dt
)( ∫ T

0

||∆h(x1(t), t)||dt +

∫ T

0

||∂∆h

∂x
(x1(t), t)||dt

)
. (7)

Proof. See [13], Ch. 5.6.2.

As an application of this lemma, consider a family of functions,hλ ∈ H(C; K1; K2; Γ),

parameterized byλ ∈ [0, λ̄) for someλ̄ > 0, for given C > 0, K1 > 0, K2 > 0, and a compact

set Γ ⊂ Rn. Let xλ(t) be defined by the differential equatioṅxλ = hλ(xλ, t), t ∈ [0, T ], with

a common initial conditionx0 ∈ Γ. For the special case whereλ = 0 we will use the notation

h(x, t) = h0(x, t) andx(t) = x0(t), and we define∆hλ(x, t) = hλ(x, t)−h(x, t). Fix τ0 ∈ (0, T )

such thatτ0 + λ̄ ≤ T , and letg : Rn → Rn be a function satisfying Assumption 2.1. Suppose

1The norm in the left-hand side of the inequality is the induced matrix norm.
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that ∆hλ(x, t) has the following form,

∆hλ(x, t) =





g(x), if τ0 ≤ t ≤ τ0 + λ

0, otherwise.
(8)

Let L : Rn → R be a function satisfying Assumption 2.1(i) (i.e., it is twice continuously

differentiable), and define the functionJ : [0, λ̄] → R by

J(λ) =

∫ T

0

L(xλ(t))dt. (9)

Proposition 2.1.If xλ(t) ∈ Γ for everyt ∈ [0, T ] and for allλ ∈ [0, λ̄), thenJ has the following

right derivative at 0,
dJ

dλ+
(0) = p(τ0)

T g(x(τ0)), (10)

where the costatep(t) satisfies the differential equation

ṗ(t) = −
(∂h

∂x
(x(t), t)

)T

p(t)−
(∂L

∂x
(x(t))

)T

, (11)

with the boundary conditionp(T ) = 0.

Proof. Fix λ ∈ [0, λ̄), and define∆Jλ = J(λ) − J(0). By Eq. (9), ∆Jλ =
∫ T

0

(
L(xλ(t)) −

L(x(t))
)
dt, and by the mean value theorem,

∆Jλ =

∫ T

0

∂L

∂x
(x(t) + s(t)∆xλ(t))∆xλ(t)dt (12)

for somes(t) ∈ [0, 1]. By Assumption 2.1, there existsK3 > 0 such that

||∂L

∂x
(x(t) + s(t)∆xλ(t))− ∂L

∂x
(x(t))|| ≤ K3||∆xλ(t)||. (13)

Next, by lemma 2.1 (Eq. (6)), there existsK4 > 0 such that, for allt ∈ [0, T ],

||∆xλ(t)|| ≤ K4

∫ T

0

||∆hλ(x(t), t)||dt. (14)

By the definition of∆hλ (Eq. (8), there existsK5 > 0 such that
∫ T

0

||∆hλ(x(t), t)||dt ≤ K5λ, (15)

and ∫ T

0

||∂∆hλ

∂x
(x(t), t)||dt ≤ K5λ. (16)
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Combining (13), (14) and (15) we obtain,||(∂L
∂x

(x(t) + s(t)∆xλ(t)) − ∂L
∂x

(x(t))
)
∆xλ(t)|| ≤

K3||∆xλ(t)||2 ≤ K3K
2
4K

2
5λ

2. By definingK6 = K3K
2
4K

2
5T , we have that,

∫ T

0

||(∂L

∂x
(x(t) + s(t)∆xλ(t))− ∂L

∂x
(x(t))

)
∆xλ(t)||dt ≤ K6λ

2. (17)

Consequently, and by (12), we have that

∆Jλ =

∫ T

0

∂L

∂x
(x(t))∆xλ(t)dt + o(λ), (18)

whereo(λ)/λ → 0 asλ → 0. Next, applying Lemma 2.1 (Eq. (7)) withh1 = h, x1 = x, h2 = hλ,

andx2 = xλ, it follows (by Eqs. (7), (15) and (16)) that∆xλ(t)−
∫ t

0
Φ(t, τ)∆hλ(x(τ), τ)dτ =

o(λ), where the functiono(λ) is independent oft ∈ [0, T ] or of λ ∈ [0, λ̄). Consequently, and

by Eq. (18), we have that

∆Jλ =

∫ T

0

∂L

∂x
(x(t))

∫ t

0

Φ(t, τ)∆hλ(x(τ), τ)dτdt + o(λ). (19)

Changing the order of integration in (19) we obtain,

∆Jλ =

∫ T

0

∫ T

τ

∂L

∂x
(x(t))Φ(t, τ)dt∆hλ(x(τ), τ)dτ + o(λ). (20)

Define the costatep(τ) ∈ Rn by p(τ)T =
∫ T

τ
∂L
∂x

(x(t))Φ(t, τ)dt. Taking derivative, it is apparent

that ṗ(τ)T = −p(τ)T ∂h
∂x

(x(τ), τ)− ∂L
∂x

(x(τ)), and hence Eq. (11) is in effect; and alsop(T )T = 0.

It now follows from Eq. (20) that∆Jλ =
∫ T

0
p(τ)T ∆hλ(x(τ), τ)dτ + o(λ). Hence, by Eq. (8),

∆Jλ =
∫ τ0+λ

τ0
p(τ)T g(x(τ))dτ + o(λ). Dividing by λ and taking the limitλ → 0, and noting

that p(τ)T g(x(τ)) is a continuous function ofτ , we obtain that dJ
dλ+ (0) = p(τ0)

T g(x(τ0)). This

completes the proof.

We remark that the left derivative has the same formula, as can be seen by repeating the

arguments of the proof of Proposition 2.1 with minor modifications.

Consider the functionJ(τ̄) as defined by Eqs. (5) and (3). Define the feasible set, denoted

by Λ, by Λ := {τ̄ = (τ1, . . . , τN)T : 0 = τ0 ≤ τ1 ≤ . . . ≤ τN ≤ τN+1 = T}. For everyτ̄ ∈ Λ,

define the costatep(t) ∈ Rn by the differential equation

ṗ = −
(

∂fi+1

∂x
(x, t)

)T

p− (∂L

∂x
(x)

)T
, t ∈ [τi, τi+1], i = N, N − 1, . . . , 0, (21)

with the boundary conditionp(T ) = 0.

Proposition 2.2. Suppose that Assumption 2.1 is in effect. For every pointτ̄ in the interior of
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Λ, and for alli = 1, . . . , N , the derivativedJ
dτi

(τ̄) has the following form

dJ

dτi

(τ̄) = p(τi)
T
(
fi(x(τi))− fi+1(x(τi))

)
. (22)

Proof. Define the functionh(x, t) : Rn × [0, T ] → Rn by h(x, t) = fi(x) for all t ∈ [τi−1, τi).

Then ẋ = h(x, t) with the initial conditionx(0) = x0. By Assumption 2.1, there exists a convex

compact setΓ ⊂ Rn such thatx(t) ∈ Γ for every feasiblēτ = (τ1, . . . , τN)T and for allt ∈ [0, T ].

Moreover, by the same assumption there exist constantsC > 0, K1 > 0, and K2 > 0, such

that h(x, t) ∈ H[C; K1; K2; Γ] for all τ̄ . Given i ∈ {1, . . . , N} and λ ∈ [0, τi+1 − τi), define

∆hλ(x, t) as in (8), withτi instead ofτ0, and withg(x) = fi(x) − fi+1(x). An application of

Proposition 2.1 and the remark that follows it now yields (22).

We observe that the derivativedJ/dτi may not be well defined on the boundary ofΛ. The

reason is that, ifτi+1 = τi, then changing these variables in a way that swaps their order leaves

unclear the identity of the modal function between them and hence the right-hand side of Eq.

(22). However, the expression in the right-hand side of (22) is defined on the boundary ofΛ

where, in the event thatτi+1 = τi, the domain of the modal functionfi+1 is the single point

τi+1 = τi. Let us define, for everȳτ ∈ Λ, by qi(τ̄) the right-hand side of Eq. (22), and define

q̄(τ̄) := (q1(τ̄), . . . , qN(τ̄))T ∈ RN . Then the functionτ̄ → q̄(τ̄) is well defined throughout

Λ. Note thatq̄(τ̄) = ∇J(τ̄) in the interior ofΛ. Furthermore, it is evident that the directional

derivative ofJ at τ̄ ∈ Λ in a feasible directionh is given by the inner product< q̄(τ̄), h >.

This fact will be used in the analysis carried out in the next section.

III. O PTIMALITY CONDITION AND AN ALGORITHM

This section derives a special form of the Kuhn-Tucker optimality condition that is based on

the structure of the constraint setΛ, and uses it to compute a descent direction. The analysis

requires the following result concerning continuity of∇J(τ̄).

Proposition 3.1.The functionq̄(τ̄) : Λ → RN is Lipschitz continuous throughoutΛ.

Proof. Given τ̄ ∈ Λ, denote byx(t; τ̄) and p(t; τ̄) the state and costate variables defined by

Eqs. (5) and (21), respectively, with the switching-time vectorτ̄ . By Assumption 2.1, there

exist compact setsΓx ⊂ Rn and Γp ⊂ Rn such thatx(t, τ̄) ∈ Γx and p(t; τ̄) ∈ Γp for every

t ∈ [0, T ] and for everyτ̄ ∈ Λ. Consider two points̄τ(1) = (τ1(1), . . . , τN(1))T ∈ Λ and

τ̄(2) = (τ1(2), . . . , τN(2))T ∈ Λ. By Lemma 2.1 (Eq. (6)) applied first tox (Eq. (5)) and then
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to p (Eq. (21)), there exists a constantK1 > 0 such that, for everȳτ(1) and τ̄(2), and for

all t ∈ [0, T ], ||x(t; τ̄(1)) − x(t; τ̄(2))|| ≤ K1||τ̄(1) − τ̄(2)||, and ||p(t; τ̄(1)) − p(t; τ̄(2))|| ≤
K1||τ̄(1) − τ̄(2)||. Next, by (21) and Assumption 2.1, there existsK2 > 0 such that, for every

τ̄ ∈ Λ, ||ṗ(t; τ̄)|| ≤ K2 for every t ∈ [0, T ], and hence, for everyt1 ∈ [0, T ] and t2 ∈ [0, T ],

||p(t1; τ̄) − p(t2; τ̄)|| ≤ K2|t1 − t2|. Consequently, for everyi = 1, . . . , N , we get, after some

algebra,

||p(τi(1), τ̄(1))− p(τi(2), τ̄(2)|| ≤ (K1 + K2)||τ̄(1)− τ̄(2)||. (23)

This establishes that the mappingτi → p(τi) is Lipschitz continuous inτi. A similar (and actually,

simpler) argument applies to the Lipschitz continuity of the functionτi → x(τi). Consequently,

and by (22),qi(τ̄) : Λ → RN is a Lipschitz-continuous function. This completes the proof.

We next derive a special form of the Kuhn-Tucker optimality condition. Fix a pointτ̄ =

(τ1, . . . , τN)T ∈ Λ, and recall that we definedτ0 := 0 and τN+1 = T . If τ̄ is on the boundary

of Λ then τi = τi+1 for some i = 0, . . . , N . To account for this case we define, for all

i ∈ {0, . . . , N +1}, the integer-quantitiesk(i) andn(i) as follows:k(i) := min{k ≤ i : τk = τi},
andn(i) := max{n ≥ i : τn = τi}. In other words,τj = τi for all j ∈ {k(i), . . . , n(i)}; if τi > 0

thenτk(i)−1 < τk(i); and if τi < T thenτn(i) < τn(i)+1. Furthermore, defineri(τ̄) :=
∑i

j=k(i) qj(τ̄)

andRi(τ̄) :=
∑n(i)

j=i qj(τ̄). The following result characterizes Kuhn-Tucker points.

Proposition 3.2. Let τ̄ = (τ1, . . . , τN)T be a local minimum forPσ. Then, for everyi ∈
{1, . . . , N}, ri(τ̄) ≤ 0 unlessτi = 0, andRi(τ̄) ≥ 0 unlessτi = T .

Proof. Let τ̄ = (τ1, . . . , τN)T be a local minimum forPσ. Considerk ∈ {1, . . . , N} and

n ∈ {k, . . . , N} such that: (i)τk = τn; (ii) either τk = 0 or τk−1 < τk; and (iii) τn < τn+1. We

will prove that Ri(τ̄) ≥ 0 for all i = k, . . . , n; since similar arguments apply to proving the

reverse inequality regardingri, this will complete the proposition’s proof.

If k = n then certainlyqk(τ̄) = 0 if τk > 0 and qk(τ̄) ≥ 0 if τk = 0, and henceRk(τ̄) =

qk(τ̄) ≥ 0 in either case. Next, consider the case wherek < n. For all j = k, . . . , n − 1,

since τj = τj+1, there exists a Lagrange multiplierλj ≥ 0 for the constraintτj − τj+1 ≤ 0.

Moreover, if τk = 0 then there exists a Lagrange multiplierµk ≥ 0 for the constraint−τk ≤ 0.

From the Kuhn-Tucker optimality condition, it follows that (i)qk(τ̄) + λk = 0 if τk > 0, and

qk(τ̄) + λk − µk = 0 if τk = 0; (ii) qj(τ̄)− λj−1 + λj = 0 for all j = k + 1, . . . , n− 1; and (iii)

qn(τ̄) − λn−1=0. Fix i ∈ {k, . . . , n}. Summing up these equations forj = i, . . . , n, we obtain:
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(i) for i > k, Ri(τ̄) = λi−1; and (ii) for i = k, Rk(τ̄) = 0 if τk > 0, andRk(τ̄) = µk if τk = 0.

In any event,Ri(τ̄) ≥ 0.

Corollary 3.1. In the setting of Proposition 3.2, ifτk(i)−1 < τk(i) and τn(i) < τn(i)+1, then

Rk(i)(τ̄) = rn(i)(τ̄) = 0.

Proof. Follows immediately from Proposition 3.2, sinceRk(i)(τ̄) = rn(i)(τ̄).

In order to solve the problemPσ, to the extent of computing a point satisfying the above

optimality condition, we use a gradient-projection algorithm with Armijo step sizes. Given a

point τ̄ ∈ Λ, let Ψ(τ̄) denote the set of feasible directions from the pointτ̄ , namely,

Ψ(τ̄) := {h̄ ∈ RN | for some ζ̃ > 0, and for all ζ ∈ [0, ζ̃), τ̄ + ζh̄ ∈ Λ}.

Let h̄(τ̄) denote the projection of the vector−q̄(τ̄) ontoΨ(τ̄). The following algorithm uses the

Armijo step sizes in this direction.

Algorithm 3.1 Gradient-Projection Algorithm with Armijo Step Sizes.

Given: Constantsα ∈ (0, 1), β ∈ (0, 1), and z̄ > 0.

Initialize. Choose an initial point̄τ0 ∈ Λ. Seti = 0.

Step 1.If τ̄i + z̄h̄(τ̄i) /∈ Λ then computezmax := max{z ≥ 0 | τ̄i + zh̄(τ̄i) ∈ Λ}; otherwise set

zmax := z̄.

Step 2.Compute the step sizeζi by

ζi = max{z = zmax · βk; k ≥ 0 | J(τ̄i + zh̄(τ̄i))− J(τ̄i) ≤ αz < h̄(τ̄i), q̄(τ̄i) >}. (24)

Step 3.Set τ̄i+1 := τ̄i + ζih̄(τ̄i), seti = i + 1, and go to Step 1.

Note that, ifτ̄i + z̄h̄(τ̄i) ∈ Λ thenzmax = z̄, and if τ̄i + z̄h̄(τ̄i) /∈ Λ thenzmax is the maximum

step sizez for which τ̄i+zh̄(τ̄i) ∈ Λ. Moreover, the step size computed in Step 2 isζi := zmax ·βk

for some integerk ≥ 0. Ref. [13] contains an analysis of this algorithm and various alternative

versions thereof. In particular, it proves that (i)h̄(τ̄i) indeed is a descent direction from̄τi, i.e.,

J(τ̄i+1) ≤ J(τ̄i); (ii) the step sizeζi is nonzero as long as̄τi does not satisfy the Kuhn-Tucker

optimality condition (and hence the optimality condition established in Proposition 3.2), and

(iii) every accumulation point of a sequence{τ̄i}∞i=0, computed by the algorithm, satisfies the

optimality condition. Therefore, a practical stopping rule is to end the algorithm’s run at a point

τ̄i whenever||h̄(τ̄i)|| < ε for an a-priori chosen value ofε > 0. Moreover, the algorithm is

stable in the sense that it will converge from every starting point, and it has a linear asymptotic
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convergence rate. Ref. [13] also gives recommendations for the choices ofα, β andz̄. For details,

please see pp. 30-31 of [13].

Finally, a word must be said about the computation ofh̄(τ̄) for a givenτ̄ := (τ1, . . . , τN)T ∈ Λ.

Let us define ablock to be a contiguous integer-set{k, . . . , n} ⊂ {1, . . . , N} such thatτn = τk

(and henceτi = τk for all i ∈ {k, . . . , n}). Observe that every set of contiguous integers that is

a subset of a block is also a block. Furthermore, we say that a block ismaximal if no superset

thereof is a block. Obviously, the set{1, . . . , N} is partitioned into disjoint maximal blocks in

a way that depends on̄τ .

The following computation of̄h(τ̄) := (h1(τ̄), . . . , hN(τ̄))T is done one-block-at-a-time in the

following manner. Let{k, . . . , n} be a maximal block associated with̄τ .

Algorithm 3.2. Procedure for computinghi(τ̄), i = k, . . . , n.

Step 0.Set ` = k.

Step 1.Computermax defined by

rmax := max{ ri(τ̄)

i− k + 1
| i = `, . . . , n}.

Definem := max{i = k, . . . , n : ri

i−k+1
= rmax}.

Step 2.For all i ∈ {`, . . . , m}, definehi(τ̄) by −rmax unless either (i)τm = 0 andrmax > 0, or

(ii) τm = T andrmax < 0. In either case (i) or (ii), sethi(τ̄) = 0.

Step 3.If m = n, exit. If m < n, set` := m + 1 and go to Step 1.

Proving that the resulting vector̄h(τ̄) indeed is the projection of−q̄(τ̄) onto Ψ(τ̄) is fairly

straightforward once we realize that that projection is the vector inΨ(τ̄) of least distance from

−q̄(τ̄). The proof will lead us astray from the main topic of this paper, and hence will not be

presented here. We point out, however, that the optimality condition established in Proposition

3.2 has the following associated intuitive geometric appeal. If the optimality condition is satisfied,

then obviouslyh̄(τ̄) = 0. If it is not satisfied, then Algorithm 3.2 indicates which variablesτi,

i ∈ {k, . . . , n}, should be increased and which ones should be decreased; in other words, a

descent direction forJ clearly emerges.

IV. I NSERTINGSWITCHING MODES TO A GIVENSCHEDULE

The optimization problem that we consider is greatly complicated if the modal schedule

becomes part of the variable parameter. In this case we have a mixed integer problem which
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may be NP hard. However, it appears to be possible to overlay a continuous structure over the

parameter space, and hence compute sensitivity measures (gradients) and use them in algorithms

that seek local minima. This section describes such a continuous structure as applied to the

insertion of a new mode into an existing schedule. For the sake of clarity we present only a

simple case and numerical results therewith, while deferring the general case and its analysis to

a future publication.

Fix a modal sequenceσ = {α(i)}N+1
i=1 and the associated switching-time vectorτ̄ = (τ1, . . . , τN)T .

Recall that the state trajectory{x(t)} evolves according to Eq. (2), and by definingfi = gα(i),

Eq. (2) is transformed into Eq. (5). Let{p(t)} be the costate trajectory defined by Eq. (21).

Now fix α ∈ A, τ ∈ (0, T ), andλ > 0 such thatτ + λ < T , and consider inserting the modal

function gα in the time-interval[τ, τ + λ]. This insertion will result in a modification of the

modal sequenceσ by adding to it the indexα. Recall the cost functionalJ as defined by Eq.

(3), and consider it as a function ofλ, hence to be denoted byJ(λ). Then the following is an

immediate corollary of Proposition 2.1.

Proposition 4.1.Let τ ∈ [τi−1, τi) for somei ∈ {1, . . . , N + 1}. Then, the one-sided derivative
dJ

dλ+ (0) has the following form,

dJ

dλ+
(0) = p(τ)T

(
gα(x(τ))− gα(i)(x(τ))

)
. (25)

Proof. Follows directly from Proposition 2.1.

If the above insertion takes place at a pointτ ∈ (τi−1, τi) then, forλ < τi− τ , the switching-

time vector becomes(τ1, . . . , τi−1, τ, τ + λ, τi, . . . , τN)T ∈ RN+2, and the associated, modified

modal sequence becomes{α(1), . . . , α(i), α, α(i), α(i + 1), . . . , α(N + 1)}. If τ = τi−1, then

only one switching time is appended at timeτi−1 + λ, and the modal functiongα is inserted in

the interval[τi−1, τi−1 + λ), but Eq. (25) holds true. We later will denote the termdJ
dλ+ (0) by

dJ
dλ+ (0; τ) in order to emphasize its dependence on the insertion pointτ . We point out that when

the above term has to be computed for a number of insertion pointsτ , the costate trajectory

need be computed only once. Proposition 4.1 and the sensitivity formula (25) will be used in

the next section for computing insertion points.

It is possible to consider inserting multiple switching modes at a pointτ ∈ (τi−1, τi) and

extend Proposition 4.1 in the following way. Fixβ(j) ∈ A, j = 1, . . . , m, for somem > 0; fix

τ ∈ (0, T ) andλ > 0 such thatτ +λ < T ; and fixaj > 0 such that
∑N

j=1 aj = 1. Now insert the
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modal functionsgβ(1), . . . , gβ(m), in the indicated order, in successive time-intervals of respective

durationsλaj, j = 1, . . . , m, starting withgβ(1) at time τ . Consider the cost functionalJ as a

function of λ ≥ 0.

Proposition 4.2.The one-sided derivativedJ
dλ+ (0) has the following form,

dJ

dλ+
(0) = p(τ)T

(
a1gβ(1)(x(τ))+

m∑
j=2

(aj−aj−1)
(
gβ(j)(x(τ))−gβ(j−1)(x(τ))

)−amgα(i)(x(τ))
)
.

(26)

Proof. Follows directly from Proposition 2.1 and the chain rule.

V. NUMERICAL EXAMPLE

To test the viability of the gradient formula, we apply Algorithm 3.1 to a simple problem.

Admittedly, the problem is but of an academic nature, but it highlights the salient features of

our approach.

The system in question alternates between two modes,mode 1andmode 2. Mode 1 has the

dynamic representation by the equationẋ = A1x, and mode 2 is represented by the equation

ẋ = A2x; herex ∈ R2, andA1 and A2 are 2 × 2 matrices. LetA := {1, 2}, and letg1(x) =

A1x and g2(x) = A2x. The time interval is[0, T ] with T = 10, and the initial condition is

x0 = x(0) = (1, 1)T . The cost criterion (functional) isJ = 1
2

∫ 10

0
||x(t)||2dt, and the variable

parameter consists of the switching sequence (including the number of switches) between the

modes. The matricesA1 andA2 are the following,

A1 =


 −1 0

1 2


 , and A2 =


 1 1

1 −2


 .

We observe that each one of the matrices has one positive eigenvalue and one negative eigenvalue,

and the respective eigenvectors of the negative eigenvalues do not coincide. Consequently, the

switching is used to manage the unstable parts of the state trajectories. In fact, given the ”energy”

cost functional, we expect the optimal switching schedule (if an optimum exists) to frequently

switch between the two modes.

The algorithm for minimizingJ alternates between two phases, corresponding to its Step 1

and Step 2, below.

Algorithm 5.1.

Given: A grid Θ := {θ`, ` = 0, 1, . . . , L} of equally-spaced points covering the interval[0, T ],
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and anε > 0.

Step 0.Let σ := {1}, namelyẋ = A1x for all t ∈ [0, T ] and there are no switching times. Set

N = 0.

Step 1.For everyj = 0, . . . , N , do (i) and (ii) as follows:

(i) Compute a pointθj ∈ Θ such that

θj ∈ argmin{ dJ

dλ+
(0; τ) | τ ∈ Θ ∩ [τj, τj+1)}. (27)

(ii) If dJ
dλ+ (0; θj) < 0 then modify the switching scheduleσ by adding two switching points at

θj and the switching modeAj+1(mod 2) between them, and setN = N + 2. On the other hand,

if dJ
dλ+ (0; θj) = 0, then stop and exit.

Step 2.Use Algorithm 3.1 to solve the problemPσ to the extent of computing a point̄τ such

that ||h̄(τ̄)|| < ε.

Step 3.Go to Step 1.

We choseε to beε = 0.3, and the gridΘ consisted of 200 equally-spaced points in the interval

[0, 10]. Also, whenever we added the two switching times in Step 1 we separated them by 0.02,

i.e., one was at a pointθj and the other was at0.02 to the right ofθj.

Iteration (k) τ̄(k) J(τ̄(k)) ||∇(J(τ̄))||
(*) - 113.74 -

0 (4.25, 4.27) 112.32 99.94

1 (3.70, 4.82) 59.91 82.67

9 (2.01, 7.11) 24.53 0.18

(**) (0.45, 0.47, 2.01, 4.40, 4.42, 7.11, 8.60, 8.62)24.45 3.58

17 (0.22, 0.90, 2.05, 3.82, 5.05, 7.16, 8.05, 9.16)22.40 0.26

Table 1: Numerical Results

Numerical results are shown in Table 1. In the first row, indicated by(∗) there were no

switching times and the only mode wasA1x. Step 1 then computed the switching points at

4.25 and 4.27. Thence, the algorithm considers the modal sequenceσ = 1, 2, 1 having two

switching times, and in Step 2 involving 9 iterations of Algorithm 3.1, the cost is reduced from

112.32 to 24.53 while the gradient’s magnitude declines from 99.94 to 0.18. At this point the
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algorithm reverted to step 1 and inserted the complementary mode at each one of the three

modal domains, with the resulting switching schedule shown in the row marked by (**). The

algorithm then continued in Step 2 until||∇(J(τ̄))|| = 0.26, for a cost reduction from 24.45 to

22.40. At this point (row 17) Step 1 attempted to insert a complementary mode at each one of

the 9 modal domains. The minimizers of the right-hand side of (25) ranged between -0.42 and

-0.11, deemed too small to proceed. It is for this reason that the algorithm’s run was stopped

after iteration 17.

VI. CONCLUSIONS

This paper concerns an optimal control problem defined on switched-mode dynamical systems,

whose variational parameter consists of the switching schedule. It first derives a formula for the

gradient of the cost functional with respect to a given sequence of switching times. It then

extends the formula, based on its special structure, to the directional derivative of the cost

functional with respect to the length of a time interval at which additional switching modes can

be inserted. The approach described in this paper holds out promise of computing suboptimal

solutions to optimal scheduling problems, including the determination of modal sequencing, in

hybrid dynamical systems. Numerical examples testify to the potential viability of the proposed

approach.
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