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Abstract— Receding horizon control strategies have
proven effective in many control and robotic applications.
These methods simulate the state a certain time horizon
into the future to choose the optimal trajectory. However,
in many cases, such as in mobile robot navigation, the
selection of an appropriate time horizon is important as too
long of a time horizon can amplify the detrimental effects
caused by environmental uncertainties in the prediction
of the future state while too of a short horizon will
lead to reduced performance. In this paper we strike a
balance between these two conflicting objectives by first
introducing a receding horizon method for navigation
founded on schema-based behaviors. We then suggest a
method of adapting the time horizon by minimizing a cost
function which balances the performance of the underlying
control problem (which prefers longer horizons) with the
performance of our state prediction (which prefers shorter
time horizons). We illustrate the operation with an example
which shows the usefulness of our navigation scheme with
an adaptive time horizon.

I. INTRODUCTION

Robot navigation is the object of much research and
the subject of many books (e.g. [1] and [2]). Many
of these techniques simulate the actions of the robot
into the future and choose the control based on some
performance metric. Such methods range from search
algorithms such as Dijkstra’s algorithm and the many
derivatives thereof (e.g. [1]) to optimal control solutions
for generating appropriate trajectories (e.g. [3]). These
methods are useful due to their ability to, given a
cost function, choose the optimal control action for
navigation while respecting constraints on the dynamics,
control effort, and environmental factors.

However, one of the difficulties with navigating
through a partially unknown environment is that the
precomputed optimal trajectories can only be followed
for a small amount of time. Over longer periods they
can potentially produce problems caused, for example,
by the occurrence of previously undetected obstacles.
Receding horizon control strategies offer a potential
remedy to this problem in that they utilize the usefulness
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of the optimal control strategies while at the same time
adding a certain element of feedback into the system
(e.g. [4]).

Instead of depending on the model to come up with
the entire trajectory, receding horizon strategies only
compute the trajectory over a given time horizon and
then take a single step along that trajectory. This idea
has proven highly useful in a number of different control
applications (e.g. [5] and [6]). In robotics, this view is
represented, for example, in [7] and [8]. While reced-
ing horizon methods are able to capture the desirable
benefits of optimal solutions, there is an inherent trade-
off between using a large horizon to capture the optimal
solution and a short horizon to decrease the detrimental
effects of poor predictions.

The typical approach in the receding horizon frame-
work is to choose a fixed time horizon over which to
predict the unknown variables and obtain the optimal
control input. If we had perfect estimates we could then
make the time horizon as large as possible subject to
factors such as computation speed, convergence, sta-
bility, and satisfaction of terminal constraints (see for
example [4] and [6]). However, when we do not have
perfect predictions, a time horizon which is too large
may be detrimental in that the effect of the poor estimate
is amplified over a longer time period. Likewise, if we
choose our look-ahead horizon to be too small then the
solution may not count on the benefits of the underlying
optimal control solution due to the fact that it does not
look far into the future to see what is actually optimal.

The remainder of this paper will proceed as follows:
In the next section we will introduce a receding horizon
method for navigation based on schema-based behav-
iors. We explain the reason behind this approach and
show the conditions for optimality. In Section III we
will introduce a general framework for adapting the
look-ahead horizon for receding horizon problems in
an optimal fashion and give the optimality conditions.
Then, in Section IV, we provide an example integrating
our proposed receding horizon navigation control with
an adaptive time horizon and end the paper with some
concluding remarks.
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II. RECEDING HORIZON SCHEMA-BASED
NAVIGATION

Schema-based behaviors are founded on the idea that
simple motor behaviors can be designed such that the
aggregate behavior produces the desired result [2]. After
the different behaviors are chosen, the overall movement
of the robot is obtained by summing the outputs of
the weighted behaviors [2]. However, assigning these
weights is not a trivial task.

In navigation many behaviors are possible, such as
move-to-goal, move-ahead, avoid-static-obstacles, stay-
on-path, and avoid-past to name a few [2]. But how do
you determine which of these is more important and
assign weights accordingly? Unless there is some type
of performance index, it will be up to the engineer to
tune these weights until the desired behavior is observed,
but this result would be highly dependent on the environ-
mental variables at hand. Moreover, it is conceivable that
the importance of each behavior could change over time,
depending on the immediately surrounding environment.

There are methods for choosing and adapting these
weights such as fuzzy-logic, genetic algorithms, and
other learning procedures [2]. These strategies can be
highly computationally intensive or require heavy tuning
which would cause the solution to be heavily dependent
on the specific environment. We propose that a receding
horizon approach could be introduced to adapt these
weights online by minimizing a performance index. This
will allow the effect of the weights to be simulated into
the future to choose the weights that would result in the
lowest cost.

We choose to do this instead of using the cost function
to determine the optimal trajectory directly. Computing
the optimal trajectory can be a very computationally
intensive problem because it often requires methods
which can have poor convergence characteristics or
require intense computation (e.g. [3]). To perform this
optimization at every time step can be difficult (e.g.
[5]). On the other hand, parameter optimization is much
less computationally intensive and often, as in this case,
only requires integrating the state forward in time and
a costate backward in time for each calculation of the
gradient.

Behavior-based schemas provide a good framework
in which this parameter optimization can take place.
It is assumed that one has designed or could design
these behaviors to make the robot act in the desired
fashion. This parameter optimization basically chooses
which behavior combination is needed at the given time
to perform the task.

A. Navigation Schemas

Navigation using schema-based behaviors is equiva-
lent to using potential functions for navigation, except
for the fact that in the potential functions method a
potential function is defined and the movement of the
robot is in the negative gradient (e.g. [10]) whereas the
schema-based navigation directly defines the negative
gradient. There are many more advanced potential func-
tions than the ones presented here (e.g. [1], and [10]), but
we have chosen our functions to demonstrate the utility
in adapting both the weights and the time horizon.

We are going to assume that we have a robot with
N distance sensors distributed evenly around the robot.
These sensor measurements are scalar distance values
from which we assume we can calculate the planar
position of an obstacle point. We denote the point of
the ith sensor measurement as oi ∈ R2. An example of
this type of sensor measurement can be seen in Figure
1. It shows a robot with N = 50 sensors, each sensor
with a limited range of sensing.

Fig. 1: Above shows an example of the distance sensing we will use.
The large blue circle shows the sensing limit of the distance sensors
while the small circles represent locations where the obstacles were
sensed.

We let the state of our system be the planar position
of the robot and use single integrator dynamics, ẋ = u,
where u, x ∈ R2. This is not a bad assumption for
mobile robots because you can represent the kinematics
of a two-wheeled mobile robot as such after you use an
approximate diffeomorphism and feedback linearization
[11]. This allows us to easily incorporate navigation
behaviors into our dynamics as we let

ẋ(t) = u(t) =

m∑
i=1

γiβi(x(t), O(t)), (1)
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where m is the number of behavior functions, γ ∈ Rm
is a vector of behavior weights, βi(x,O) ∈ R2 is the ith

behavior function, and O ∈ RN×2 is a matrix of the N
sensor measurement positions where row j corresponds
to oTj , the position of the jth sensor measurement.

In [2] the author defines several schema-based be-
haviors which can be used for navigation; we will use
two of these behaviors. However, we must first write
them in a form amenable to be used in the equations
above, which will allow us to use them in deriving the
optimality conditions.

Move-to-Goal: This behavior tries to move the robot
towards the goal. Its magnitude is the fixed gain value
and the direction is towards the desired goal. We define
this as follows.

β1(x) =
xg − x
‖xg − x‖

(2)

where xg is the goal state and x is the actual state.
Avoid-Static-Obstacle: This behavior tries to move

away from obstacles. Its direction is along the vector
pointing from the center of the obstacle to the center
of the robot. The obstacle is located a distance d away,
it has a sphere of influence S, and the robot is to stay
a radius R away from the obstacle. The magnitude is
given by

mag =


0 d > S
S−d
S−R R < d ≤ S
∞ d ≤ R

To avoid the jump to the infinite input, we will assume
that R is small and the minimization of the cost function
(which we will design to assign an infinite cost as d→
0) will keep us away from that case. We also sum over
all of the obstacles detected by our sensors. We define
the avoid-static-obstacle as

β2(x,O) =

N∑
i=1

A(x, oi) (3)

where

A(x, oi) =

{
0 di > S
S−di
S−R

x−oi
di

R < di ≤ S
, di = ‖x− oi‖

B. Optimality Conditions
To find the optimal weights for the behaviors we

define a cost function that will be a function of the state,
x(s), the environment factors (which in this case are the
obstacle data measurements), O(s), and the behavior
weights, γ. At each time step, we choose the weights
that minimize this cost. We write this cost as∫ t0+∆

t0

L(x(s), γ, O(s))ds+ g(x(t0 + ∆) (4)

s.t. ẋ(t) = f(x(t), γ, O(t)), x(t0) known

However, we assume that we are in an unknown en-
vironment so we do not know O(s) for s > t0, so
we simply predict it as Ô(t0, s) = O(t0) for s > t0.
This will then lead us to estimate x(s) as ˙̂x(t0, s) =
f(x̂(t0, s), γ, O(t0)) where x̂(t0, t0) = x(t0). In other
words, we are choosing γ solely on our current sensor
measurements. This will obviously cause errors in our
state trajectory estimation, but will provide a good
example for the utility of adapting the time horizon. This
allows us to write a well-posed cost function as

J(γ) =

∫ t0+∆

t0

L(x̂(t0, s), γ, O(t0))ds

+ g(x̂(t0, t0 + ∆))

(5)

We can now augment (5) with the dynamics to obtain

J̄(γ) =

∫ T

t0

(
L(x̂(s), γ, O(t0))

+λT
(
f(x, γ)− ˙̂x)

))
ds

+g(x̂(T ))

(6)

where T = t0 + ∆ and x̂(s) = x̂(t0, s) for ease of
notation.

Using as standard variational argument, we perturb
γ → γ + εv which then causes x̂(t)→ x̂(t) + εη(t). By
letting J̄ε denote J̄(γ + εv) we obtain

J̄ε − J̄
ε

=

∫ T

t0

((∂L
∂x

(x̂(t), γ, O(t0)) (7)

+ λT (t)
∂f

∂x
(x̂(t), γ, O(t0)) + λ̇(t)

)
η(t)

+
(∂L
∂γ

(x̂(t), γ, O(t0)) (8)

+ λT
∂f

∂γ
(x̂(t), γ, O(t0))

)
v
)
dt

+
(∂g
∂x

(x̂(T ))− λT (T )
)
η(T ) + λT (0)η(0)

This gives us the optimality condition

∂J̄

∂γ
(γ) = ξT (t0) (9)

where the costates λ and ξ satisfy the following (back-
wards) differential equations:

λ̇(t) = −∂L
∂x

T

− ∂f

∂x

T

λ(t), λ(T ) =
∂gT

∂x
(x̂(T )) (10)

ξ̇(t) = −∂L
∂γ

T

− ∂f

∂γ
λ(t), ξ(T ) = 0 (11)
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From (1) we can write our predicted state dynamics
as

˙̂x(t0, t) = β(x̂(t0, t), O(t0))γ

x̂(t0, t0) = x(t0)

where β(x,O) =

β
T
1 (x,O)

...
βTm(x,O)

 ∈ Rm×2

This allows us to write the partial derivatives of the
dynamics in a simple form

∂f

∂γ
(x̂(t), γ, O(t0)) = βT (x̂(t), O(t0))

∂f

∂x
(x̂(t), γ, O(t0)) =

m∑
i

γi
∂βi
∂x

(x̂(t), O(t0))

≡ Q(x̂(t), O(t0))

We define our instantaneous cost, L, as a cost on con-
trol effort and the proximity of the sensor measurements
and let it take the form

L(x̂(t), γ, O(t0)) = ρ1

N∑
i=1

r(x̂(s), oi(t0)) (12)

+
ρ2

2
uT (s)Ru(s) (13)

= ρ1

N∑
i=1

r(x̂(s), oi(t0)) (14)

+
ρ2

2
γTβ(x̂(s),O(t0))RβT (x̂(s), O(t0))γ

where ρ1,ρ2, and R are weights and r(x, o) is a repulsive
function taking the form r(x, o) = 1

2‖x−o‖2 . The partials
of L required in (10) and (11) can be written as

∂L

∂x
= ρ1

N∑
i=1

∂r

∂x
(x, oi) + ρ2γ

Tβ(x,O)RQ(x,O)

(15)

= −ρ1

N∑
i=1

(x− oi)T

‖x− oi‖4
+ ρ2γ

Tβ(x,O)RQ(x,O)

∂L

∂γ
= ρ2γ

Tβ(x,O)RβT (x,O) (16)

Finally, to attract the state to the goal, we write the
terminal cost as a cost penalizing the distance to the
goal.

g(x(T )) =
ρ3

2
‖x(T )− xg‖2 (17)

III. ADAPTIVE LOOK-AHEAD

As stated in the introduction, to further improve the
performance of our receding horizon approach we would
like to find the best time horizon possible at each step.
Ideally we would like to look at how well our current
prediction will compare with future values, but since
this is a noncausal problem we must formulate a causal
approximation. Since each proposed solution is only an
approximation, we propose two solutions and evaluate
their performance through an example.

To do this we make the philosophic assumption that
our past ability to predict the state will reflect on our
future ability to predict the state. While this is not always
the case, it allows us to formulate the problem in a causal
manner. If we had a perfect prediction, we would like to
make the time horizon as large as possible to improve
the underlying optimal control solution. However, we
scale back our time horizon when the predictions are
poor due to the detrimental effects of a poor prediction.

In [9] we addressed the problem of adjusting the time
horizon based on the ability to predict a reference input.
However, by looking at the state we are proposing a
more general solution and one that is more applicable
to robot navigation. This is significantly different than
that in [9] due to the fact that errors in the prediction of
the state trajectory will not only incorporate errors in es-
timating reference input but will also include modelling
errors and errors resulting from predicting environmental
factors such as obstacle positions.

To formulate quality measures that encapsulate the
trade-off between the quality of the prediction and
the quality of the optimal solution we introduce cost
functions with two parts. Each cost function has a
point cost, G(∆), on the value of the time horizon,
∆, which should be designed to penalize small time
horizon values (ie 1

∆ ). Each cost function also has an
instantaneous cost, F (x, x̂), that penalizes differences
in estimated and actual state values (ie ρ

2‖x − x̂‖2)
causing the time horizon to be smaller. This exchanges
the tuning of a specific time horizon, which would be
very problem specific, for tuning gains that are specific
to the performance of the predictor.

A. Looking at the Past

The first quality measure that we propose looks at the
past predictions to see how well we have been doing at
predicting where the state trajectory will evolve. This is
done by summing the contribution of the instantaneous
cost between the actual state values and the prediction.
We denote our prediction of the actual state, x(s), as
x̂(τ, s) where τ is the time at which the prediction was
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made. We let the cost take the form

Jpast(t,∆) =

∫ t

t−∆

F (x(s), x̂(t−∆, s))ds+G(∆)

(18)
where

˙̂x = f(x̂(t−∆, s), u(s))

x̂(t−∆, t−∆) = x(t−∆)

We will solve for ∆ using gradient descent strategies.
As such, the gradient for Jpast can be expressed as

∂Jpast
∂∆

(∆) = F (x(t−∆), x̂(t−∆, t−∆))

+
∂G

∂∆
(∆) + p(t−∆)

(19)

Where p(t) = 0 and

dp

dq
(q) = −∂F

∂x̂
(x(q), x̂(t−∆, q))

∂x̂

∂∆
(t−∆, q) (20)

The difficulty with this equation lies in calculating
∂x̂
∂∆ (t − ∆, q) which would be problem dependent or
could be estimated by

∂x̂

∂∆
(t−∆, q) ≈ x̂(t−∆− ε, q)− x̂(t−∆, q)

ε
(21)

for small ε.

B. Testing the Present

The second quality measure looks to see how far
back in time our current parameters capture the previous
values of the state trajectory. In this cost function we
basically run the dynamics backward in time to see how
well the current parameters conform to what we have
already done. We write the cost as

Jpresent(t,∆) = −
∫ t−∆

t

F (x(s), x̂(t, s))ds+G(∆),

(22)
where

˙̂x = f(x̂(t, s), u(s))

x̂(t, t) = x(t)

The gradient of Jpresent is much more simple than that
of (18) due to the fact that the integrand does not depend
on ∆. It takes the form

∂Jpresent
∂∆

(∆) = F (x(t−∆), x̂(t, t−∆))

+
∂G

∂∆
(∆).

(23)

The main difference between equations (18) and (22)
is the fact that the first is testing the prediction using
previous parameters and the later is testing predictions
using current parameters. Neither one is fundamentally

correct as the nature of the problem is noncausal and
these are only causal approximations. We will show in
section IV that both can provide better outcomes than a
constant time horizon.

IV. NAVIGATION EXAMPLE

In this section we present a simulated navigation
example to demonstrate both the utility of adapting
the time horizon, as defined in Section III, as well as
using receding horizon control to adapt the weights
on navigation schema-based behaviors, as defined in
Section II.

We ran 2 sets of simulations to verify the usefulness
of the proposed adaptation methods. The first set of
simulations were setup to simulate a very cluttered
environment where the paths could differ significantly
while the second was setup to simulate a structured
environment where the paths would be quite similar. The
resulting paths can be seen in Figure 2.

Each set of simulations included a simulation us-
ing constant weights and horizon, constant horizon,
and variable horizons using Jpresent and Jpast where
F (x, x̂) = ρ

2‖x − x̂‖2 and G(∆) = 1
∆ . To allow for

a fair comparison, we iterated to determine the best
possible weights in each scenario. We also allowed for
an initialization period when adapting the time horizons
to allow a history of values to be created.

For a comparison between the different methods we
evaluated the cost found in (5) with the exception that
the limits of integration were from the initial time to the
final time. The results for each simulation can be seen
in Table I.

In Table I it is evident that the adaptive time horizons
performed better than constant time horizons. Also, we
observed, for the most part, that the adaptive time hori-
zons were smaller than the best constant time horizons.
While we did not evaluate the computation time due
to the fact that the dynamics were simple and the
computation time was not significant, this could provide
an added benefit in the required computation as the
system dynamics become more complex.

V. CONCLUSION

In this paper we have presented a receding horizon
method for coordination of schema-based behaviors. We
were only able to find two sets of constant weights
that would successfully navigate through the structured
environment where each of the other methods were
quite robust to parameter changes. In both environments,
the constant behavior weights had much higher costs
than the other methods. This leaves us to conclude that
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Fig. 2: This figure shows the trajectories through both the cluttered (left) and the structured (right) environments. In each image is shown the
trajectory using a constant time horizon, and adaptive time horizon using Jpresent, and an adaptive time horizon using Jpast. The target
location is marked with a green circle

Cluttered Environment Structured Environment
Parameter Cost Parameter Cost

Constant γ1 = 40 γ1 = 39
Weights γ2 = 6 575.4 γ2 = 5 685.1
Constant
Horizon T = 0.24 498.1 T = 0.5 532.4
Adaptive
Jprev ρ = 100 479.0 ρ = 8.4 521.6

Adaptive
Jpresent ρ = 23.4 476.6 ρ = 15.31 493.23

TABLE I: This table shows the costs and parameters used to calculate the costs for the two sets of simulations.

variable behavior weights using a receding horizon ap-
proach can significantly outperform the constant weights
method.

We have also present a technique for adapting the
look-ahead horizon based upon the quality of the pre-
diction of our state trajectory. In Table I we see that
using Jpresent as a quality measure produced better
results than using Jpast. By comparing (19) and (23) we
can also see that the gradient for Jpresent is also much
easier to evaluate. With these two facts, we believe that
Jpresent is a better choice than Jpast, although a more
rigorous analysis is needed to say this conclusively.

Putting both methods together we saw that the that the
adaptive time horizons were able to outperformed the
constant time horizon in both simulations. This shows
the important fact that a variable time horizon can indeed
perform better than a constant horizon.
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