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Abstract

A solution to the problem of controlling a car-like
nonholonomic robot is proposed using a “virtual” vehi-
cle approach, which s shown to be robust with respect
to errors and disturbances. The proposed algorithms
are model independent, and the stability analysis is
done using a dynamical model, in which, for instance,
the side slip angles are taken into account.

1 Introduction

In this paper the problem of controlling a car-like
robot is studied. Many industrial applications need
problems like this to be solved in order to have good
and robust path tracking algorithms for different types
of mobile robot tasks. Naturally, this has been a well
studied topic [2, 5, 11, 12, 10, 3, 4]. A few methods
have been proposed to solve the problem, for exam-
ple, the curvature steering method (see for example
[12]) and the flatness approach [4]. However, all these
methods use an open-loop control, which is quite sen-
sitive to measurement errors and disturbances, and are
model dependent.

In this paper we propose a generic path following
control strategy which is model independent and uses
position and orientation error feedback. Our approach
can be viewed as a combination of the conventional
trajectory tracking, where the reference trajectory is
parameterized in time, and the dynamic path follow-
ing in [10], where the criterion is to stay close to the
geometric path, but not necessarily close to an a pri-
ori specified point at a given time. In our approach
a reference point on the reference path is chosen and
a simple control algorithm is used to steer the robot
toward that point. What is different from [10] in our
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approach 1s that the time evolution of the reference
point is governed by a differential equation which con-
tains the position error. One of the advantages of our
approach is that it is quite robust with respect to mea-
surement errors and external disturbances. If both er-
rors and disturbances are within certain bounds, the
reference point is going to move along the reference
trajectory while the robot follows it, otherwise, the
reference point might “stop” to wait for the robot.
For this reason we call the reference point together
with the associated differential equation a virtual car.

In this paper we also analyze our path following
control by using a dynamic model, instead of a kine-
matical car model. From Figure 1 one can see that on
a plastic floor, even at a fairly low speed (0.2m/s), for
a rubber tire mini-car the difference between the dy-
namic model and kinematic model is significant. Since
there are some state variables and coefficients in the
model which are difficult to measure in practice, it
would not be feasible here to utilize linearization tech-
niques from for example [3, 4], to simplify the analysis.

Once again we emphasize that we design our virtual
vehicle in a “closed-loop” fashion, namely, the travel-
ing of the reference point on the reference path does
not only dependent on the speed of the robot but also
on the robot’s current position. Although the focus
of the paper 1s on control of a car-like robot, for the
sake of completeness, we also propose a path plan-
ning method in which only the nonholonomic kine-
matic constraints are used. Since our control strategy
is model independent, this simplification in path plan-
ning seems not very restrictive.

In section 5, the controller is implemented on a
small car-like robot that shows our proposed solution
does not only work in theory, but also in practice.

2 Control algorithms

Our problem is to find a steering angle d7(¢) so
that the car follows a virtual vehicle s(¢) moving on a



Figure 1: In this figure, the need for a dynamic model
when analyzing the performance of a proposed con-
trol algorithm is illustrated. A circular parameterized
path (dotted) is being tracked, and in the dash-dotted
case, the velocities of the robot are derived based on a
kinematic model, while the solid path corresponds to
velocities derived from a dynamic model.

smooth reference path (i.e. P+ #0 Vs)

zq = p(s)
Ya = q(s)

In other words, we require

Jim p(t) = d (1)
T [ — thal < A, (2)

where

p(t) = V/az® + ay?

AT =T — Ty, AY=Y— Yq. (3)

Here 1 is the yaw angle (orientation of the car),
Vg = arctan £=¥2) s the desired orientation, and

T—Tq

(z,y) is a refeIEence)point on the car, for example the
center of gravity or the middle point on the front axle.
Furthermore, A > 0 is a small number that depends
on the maximum curvature of the reference path, and
d is the “look-ahead” distance.

In order to realize the control aim (1) we define v
and d and require [6]

p—d=—(p—d), (4)
which implies that

%(M(i« —ia) + 2y —9a) = —v(p—d). (5

~—

Taking into account that z4 = %s', Ya = %s' and

solving (5) with respect to $, we get that

., Op g, N .
s{az -+ ayzo} = vp(p — d) + avé + ayy,  (6)

SO
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0 0 . .
L Aya—z] [azva +ayvy +yp(p—d)]. (7)

Os

s =[az

Assuming that Ax%—}—Ayg—z # 0 (it will be zero only if
(az, ay)T is normal to the curve at (z4,y4)), together
with (7) gives us s as a function of time, and then
(za(s(t)),ya(s(t))) can be calculated. Solving (5) gives
us that

p(t) — d = (p(0) — d)e™* 3)
and thus (1) is realized.

Naturally in order for (8) to hold, Am% + Ayg—z
should stay nonzero, and the robot should be steered
close to the virtual vehicle. For this we propose the
following steering control:

dr = —k(¢ — ), (9)

where §¢ is the steering angle, and k should be cho-
sen to reflect the constraint on the maximum steer-
ing angle (since ¥ — g € [—m,7]). Here ¥4 and
(za(s(t)),ya(s(t))) are calculated via (7).

Our control algorithms are clearly model indepen-
dent. Now we show that with a dynamic model, the
control aim (2) is achieved.

3 Vehicle Model

In order to analyze the control algorithm, we use
the so called single track dynamical model [1, 8], which
is based both on a description of the balanced forces
acting on the vehicle in longitudinal and lateral di-
rections, and on the torque conditions. Although the
single track model has its limitations, and more com-
plex models can be found, for example, in [9] and the
references therein, in a low speed scenario like in our
application, it should suffice. If we group the front
and the rear wheels together as one single wheel (sin-
gle track), and let f, and f, be the forces acting on
the center of gravity of the car, and m, be the torque,
we get a vehicle model that can be seen in Figure 2,
where fr and f, are the side forces on each wheel, and
d; is the steering angle of the car. Calculating the
forces and the torque gives us that

—mv(ﬁ + 7)sin 8+ mi cos 8 fr
mv(B+r)cosB+mosing | =1 f, |, (10)
Jr m;



Figure 2: The single track model.

where r is the yaw rate, v the longitudinal velocity and
0 the side slip angle. Furthermore, m is the vehicle
mass and J is the moment of inertia.

The tire characteristics of the car can be approxi-
mated by

fr=ci*u(ds = By) = ¢ (67 — Py)
fr = _Cr*,uﬂr = _Crﬂra (11)

where ¢; and ¢, are something called “cornering stiff-
ness” of the car, and p is the so called adhesion coef-
ficient, that depends on what type of surface the road
has. In (11), B and 3, are front and rear chassis side
slip angles respectively.

In order to get an accurate description of what mo-
tion it 1s possible for the car to perform, the following
constraints are also needed:

z

veos(y + ) (12)
y = vsin(y+f), (13)

where (2, y) is the center of gravity of the vehicle.

3.1 Simplification of Model

Using the assumptions that the velocity of the car
is constant, the side slip angle is small, chassis side
slip angles are small and that the cornering stiffness
is the same for the front and the rear wheels, we get a
simplified model of the vehicle that can be written as

s = veos( + ) (14
y = vsin(y + f) (15)
mv(ﬂ +7)=—2¢tf +cdy (16)
p=r (17)
7'“=—§Cflf{%r—5f}~ (18)

Here, {; is the distance between the center of gravity
and the front wheels, and [ is the length of the car.
(In this article, we suppose that the distance between

center of gravity and the front wheels is the same as
the distance between center of gravity and the rear
wheels.)

4 Stability analysis

In order to simplify the notation, we only consider
the following family of reference paths in our analysis:

rq =8
ya = f(s)

It is obvious that the conclusions can be easily ex-
tended to the general case.
If we plug in the equations for z, ¥, we get

af 1

T4 = [AfE‘FAya—“] [azvcos(y + 0)

+ ayvsin(y + B) +vp(p — d)], (19)

and together with the steering control (9)

6 = —k(¢ — ¢a)

we thus have a closed-loop system.
Now we show that ¢ — ¢4 converges and the limit
is quite small. Rewriting (17) as follows

o i .
boda= T+ T(r—6) —da  (20)
gives us

éw=—;%+%(£r—0})—wd, (21)
v

where we have denoted ey = ¥ — 4. Our plan is to
show that (20) represents a stable dynamics driven by
bounded inputs. We then would conclude that (2) is
reached. So we need to show the following.

Subtask 1. Boundedness of 4

Evaluating 1/.)(1 gives us

; d
g = E(arctan 2_1‘)
14 2% Az '

Azx?

Now, taking into account that az? 4+ ay? = d? gives
us, after the transients (see (4)),

ba = % (¥ — ya)az — (2 — za)ay}. (23)



Using that |az| < d,|ay| < d, we can evaluate the
bound for (23).

a0 < gl2o+ (L4 Dl 0

This together with (7) gives us that

: 0 7]
dal < 52+ (5 1+ Dl(az + 55 o) 2] (29)

From (25) we conclude that 1/.)d(t) is bounded provided
that % is bounded and that az + %Ay i1s bounded
away from zero. Moreover, the upper bound (25) can
be made arbitrarily small by reducing the velocity,
ﬁ(v” .

Subtask 2. Boundedness of ¢ and r

Substituting (9) into (18) gives us

U+ a4+ b = bijy, (26)
where ; ; ;
crly crly .
=25 2 =L 27
=TT J (27)

From (27) it is easy to see that ¢ and r are bounded
since 14 is bounded and p?+ ap+ b is a Hurwitz poly-
nomial.

Subtask 3. Convergence of (tr — ;)

k4

Now, let us set up the secondary aim

— 1
lim |—r — 87| < Ay, (28)

t—=o0 Y

where A; > 0. Now, let us rewrite (18) as follows

l . lelf l .
—r =0 =——2L[—r—6;]— 6. 2
e L ULV Bl (29)
Substituting 5f = —(1/) — 1/.)(1) and denoting
l .
e= ;r—()f (30)
gives us as a result that
. legl :
e = —;%e—}—r—l/)d. (31)

From (31) it is easy to see that it represents a stable
dynamics driven by a bounded input. Hence e is also
bounded. Moreover, A; is sufficiently small for cars
operating at low velocities with small moment of in-
ertia, J = ”}—l;

Subtask 4. Boundedness of the Side Slip Angle
Rewriting (16) as follows

;O _ 25 0p s 3¢
I NI ST S

shows that (3 — %f) is bounded, and since & is also

bounded we establish the boundedness of the side slip
angle.

5 Implementation
5.1 Implementation of the Control

In order to implement the algorithm, questions con-
cerning robustness, measure and modeling errors, A /D
and D/A conversions and numerical complexity need
to be addressed before it is possible to get a real sys-
tem that actually does what it is supposed to. We
chose to try our control algorithms on a small, radio
controlled car, where we have connected the transmit-
ter to a computer.

Figure 3: The radio controlled car used for trying out
the proposed control algorithms.

However, our car system is based on a fairly cheap
toy car with a coarse A/D and D/A conversion as
well as a dead zone in the servo system. Therefore
the steering is far from precise, so what is working in
simulations may not work at all here.

The virtual car (the point P,) is given by
(z4, f(z4)) and are moving along the planned, known
trajectory. x4 is calculated, as shown in the previous
section (7), in such a way that the distance between
the actual car and P, converges exponentially to a
prespecified distance d. Since we have a sampled sys-
tem, we have to use some kind of discretized version
of the continuous expression, and we just use a simple
first order approximation to calculate the new point
za(k+ 1) = zq(k) + Tzq(k). In our system, the frame
grabber for the camera, used for tracking the car, sets
the sample-interval, T, to be 20ms.

Since the velocity of the car is noise contaminated,
we have to to make some kind of estimation, and in
our case, it turned out that a straight-forward aver-
aging over a fixed number of sample periods worked
sufficiently well.



This gives us all we need in order to determine
(z4,y4), and the control 6 = — (1 —14) that we found
in the previous section, can be implemented.

5.2 Path Planning

For the sake of simplicity, we only consider the kine-
matic constrains of a car-like robot when doing the
path planning. Based on [7], we use a type of planner
that combines splines with a bang-bang planner. The
general idea is that splines are used to plan a path
that takes the car close enough to the place where we
want to do fine maneuvering, such as parallel parking.
We then switch to a different planning mode where we
use a bang bang type of planner, using parts of circles,
produced by a maximal steering of the car, combined
with straight lines. The results from such an approach
can be seen in figure 4. One main advantage with this

L (]

Figure 4: The planned parallel parking path for our
actual car-like robot, where the rectangles represent
other cars.

type of planner is that it is based on algebraic calcula-
tions only. We do not need to solve any programming
problems and our solutions depend explicitly on the
desired safety margins, since the interpolation points
can be specified directly, depending on how far away
from the obstacles, such as other parked cars, we want
to be.

The reason why we chose to use cubic splines as our
choice of curves for the free space planner is that they
minimize

/x xF £ (x) dx, (33)

where f(z) is the path that we want the car to follow.
This i1s obviously very useful when the car-like robot
has a maximal steering angle constraint.

6 Conclusions

In this paper a path following control strategy in-
dependent of model is proposed and is analyzed on a
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(a) Car position and the
tracked trajectory

(b) Orientation of the car

Figure 5: In the left figure, the tracked trajectory (dot-
ted) and the front point (solid) on the car can be seen,
as well as the front and the rear points plotted to-
gether. In the left figure, the orientation of the car
can be seen.

(a) Car position and the (b) Orientation of the car

tracked trajectory

Figure 6: In the left figure, the tracked trajectory (dot-
ted) and the front point (solid) on the car can be seen,
as well as the front and the rear points plotted to-
gether. The rectangles corresponds to obstacles, and
the picture shows an actual parallel parking experi-
ment. In the left figure, the orientation of the car can
be seen.

dynamical model. What is new here is that by combin-
ing the conventional trajectory tracking approach and
the more recent geometric path following approach,
we design a “virtual car” that moves on the reference
path and is regulated in a closed-loop fashion both by
the position error and speed. We have also shown that
the algorithms converge well under a dynamic model
of the car-like platform.

Implementing these ideas on an actual robot gives



us a real system that behaves satisfactorily. Some ex-
amples can be seen in the Figures 5-6.
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