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Abstract

In this paper, we study graphs that arise from certain sensory and com-

munication limitations on the local interactions in multi-agent systems.

In particular, we show that the set of graphs that can represent formations

corresponds to a proper subset of all graphs and we denote such graphs

as connectivity graphs. These graphs have a special structure that allows

them to be composed from a small number of atomic generators using a

certain kind of graph amalgamation. This structure moreover allows us

to give connectivity graphs a topological characterization in terms of their

simplicial complexes. Finally, we outline some applications of this topo-

logical characterization to the construction of decentralized algorithms.

1 Introduction

The problem of coordinating multiple mobile robots is one in which a finite
representation of the configuration space appears naturally, namely by using
graph-theoretic models for describing the local interactions in the formation. In
other words, graph-based models can serve as a bridge between the continuous
and the discrete when trying to manage the design-complexity associated with
formation control problems. Notable results along these lines have been pre-
sented in [1, 2, 3], where graphs are used for modelling what neighboring robots
a given robot can communicate with. In [4], the idea is to represent the desired
formation as a graph, and then produce formations from free agents such that
the appropriate links are formed between them. In [5], such graph-models were
successfully used for showing how the use of nearest neighbor average heading
rules asymptotically produced subgraphs in which all the robots maintained the
same heading.

∗This work was sponsored by the National Science Foundation through the program EHS
NSF-01-161 (grant # 0207411).
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The conclusion to be drawn from these research efforts is that a number of
questions can be answered in a natural way by abstracting away the continuous
dynamics of the individual agents. In particular, if the existence of an edge
between two agents corresponds to certain geometric relations such as spatial
closeness, then the graphs are really dynamic in the sense that the time-driven
evolution of the configuration space may result in the production of a new graph.
Hence, by introducing a graph-based representation of the formation, one has
in fact arrived at a hybrid dynamic system. Furthermore, information can be
allowed to flow along the edges of the graph, thus resulting in a change of the
time-driven dynamics based on events at the graph-level, which further stresses
the hybrid nature of this construction.

In algebraic topology literature, the connectivity graphs appear as nerves
of certain covers for sets. The concept of giving a topological representation
to the union of a collection of sets is not new. Eduard Čech introduced his
Čech - homology theory in 1932, which deals with such representations [10].
This work however remained un-noticed in applied sciences till it re-appeared
in [6, 7] in the 1990’s. In [6], unions of disks were considered, the nerve of which
are exactly connectivity graphs and [7] describes some kinetic data structures
that capture the changes in topology of dynamic connectivity graphs. However,
it should be noted that this work differs from those mentioned above in many
ways. Although Čech homology fully describes the topological shape of the
collection of sets (or its dual, the connectivity graph), it is difficult to compute.
The framework of connectivity graphs described below is easy to implement.
More importantly, this framework is tailored specifically for implementation on
a distributed (and decentralized) system of agents.

In this paper we show that the graphs that can represent formations do in
fact correspond to a proper subset of all graphs, denoted by the set of connectiv-
ity graphs (Section 2), and that it is possible to give a topological characteriza-
tion of such graphs in terms of their geometrical structure (Section 3) and their
simplicial complexes (Sections 4 and 5). In the end (Section 6) we outline some
applications of the theory developed in this paper, followed by the conclusions
(Section 7).

2 Formations and Connectivity Graphs

Graphs can model local interactions between agents, when individual agents
are constrained by limited knowledge of other agents. In this section we present
a graph theoretic formalism for describing formations in which the primary
limitation of perception for each agent is the range of its sensor. Suppose we
have N such agents with identical dynamics evolving on R2. Each of the agents
carries a pre-assigned unique identification tag n ∈ {1, 2, . . . , N}. Each agent is
also equipped with a range limited sensor by which it can sense the position of
other agents. All agents have identical sensor ranges δ. Let the position of each
agent be xn ∈ R2, and its dynamics be given by
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ẋn = f(xn, un),

where un ∈ Rm is the control for agent n and f : R2 × Rm → R2 is a smooth
vector field. The configuration space CN (R2) of the agent formation is made up
of all ordered N -tuples in R2, with the property that no two points coincide,
i.e.

CN (R2) = (R2 × R2 × . . .R2)−∆,

where ∆ = {(x1, x2, . . . , xN ) : xi = xj for some i 6= j}. The evolution of
the formation can be represented as a trajectory F : R+ → CN (R2), usually
written as F(t) = (x1(t), x2(t), . . . xN (t)) to signify time evolution. The spatial
relationship between agents can be represented as a graph in which the vertices
of the graph represent the agents, and the pair of vertices on each edge tells
us that the corresponding agents are within sensor range δ of each other (See
Figure 1) However several formations may give the same graph. We make these
ideas precise as follows.

Figure 1: Agents and their connectivity graph.

Definition 2.1 (Connectivity Graph of a Formation) Let GN denote the
space of all possible graphs that can be formed on N vertices V = {v1, v2, . . . , vN}.
Then we can define a function ΦN : CN (R2) → GN , with ΦN (F(t)) = G(t),
where G(t) = (V, E(t)) ∈ GN is the connectivity graph of the formation F(t).
vi ∈ V represents agent i at position xi, and E(t) denotes the edges of the graph.
eij(t) = eji(t) ∈ E(t) if and only if ‖xi(t)− xj(t)‖ ≤ δ i 6= j. In other words,

ΦN (F(t)) =({v1, . . . vN}, {(vi, vj) | i 6= j and

‖xi(t)− xj(t)‖ ≤ δ})
(1)

Some observations about these connectivity graphs can be made already at
this point.

• The graphs are simple by construction i.e. there are no loops or parallel
edges.

• The graphs are always undirected because the sensor ranges are identical.
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• The motion of agents in a formation may result in the removal or addition
of edges in the graph. Therefore G(t) is a dynamic structure.

• Every graph in GN is not a connectivity graph.

The last observation is not as obvious as the others, and it is analyzed in
some detail below. While many researchers have referred to graphs of formations
as their models; [1, 5]; the issue of whether an arbitrary graph corresponds to a
proper agent formation has been mostly overlooked.

Definition 2.2 (Realization of a graph in CN (R2)) A realization of a graph
G ∈ GN is a formation F ∈ CN (R2), such that ΦN (F) = G.

An arbitrary graph G ∈ GN can therefore be realized as a connectivity graph
in CN (R2) if Φ−1N (G) is nonempty. We denote by GN,δ ⊆ GN , the space of
all possible graphs on N agents with sensor range δ, that can be realized in
CN (R2). Let us start by analyzing this space for small values of N . For N = 1,
the configuration space is C1(R2) ' R2 and the only possible graph on one agent
is always realizable. For N = 2, the situation corresponds to whether the two
agents are within δ distance of each other or not. Therefore all formations in the
subset {(x1, x2) : ‖x1−x2‖ ≤ δ, x1 6= x2} ⊂ C

2(R2) correspond to the connected
graph of 2 vertices, while the remaining configuration space corresponds to the
situation when the graph is disconnected.

(x31, x32)

(x11, x12) (x21, x22)

ψ123
θ

l13

l12

l23

Figure 2: Depicted are three robots and their inter-robot distances.

If we now move on to the case for N = 3 similar constructions can be
obtained for various connected and disconnected graphs on 3 vertices. Consider
for example the situation in Figure 2, where the 3 agents are positioned at
the points marked by circles. Let each position xi be given by its Cartesian
coordinate pair (xi1, xi2)

T . For notational convenience let ‖x1−x2‖ = l12, ‖x2−
x3‖ = l23 and |x1 − x3‖ = l13. Also let θ and ψ123 be the angles shown in
the figure. In general, any connectivity graph on N vertices imposes various
constraints on the relative positions of individual agents in the configuration
space CN (R2). In the case of a connected graph on 3 vertices, the constraints
on positions x1, x2 and x3 correspond to a single constraint on the angle ψ123,
when the the agents are positioned as shown in Figure 2. This simple observation
will subsequently lead to some interesting properties of the connectivity graphs
and their realizations. Suppose we are considering the line graph on 3 vertices
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in Figure 4, then the given geometrical configuration corresponds to this graph
if l12 ≤ δ, l23 ≤ δ, and l13 > δ. Moreover we can write

l213 = (l12 + l23 cos θ)
2 + (l23 sin θ)

2,

= l212 + l223 + 2l23l12 cos θ.

If l13 > δ then

cos θ >
δ2 − l212 − l

2
23

2l23l12
.

It is easy to see that the term on the right has a minimum corresponding to
the maximum values of l12 = l23 = δ. Therefore cos θ > − 12 which means
that θ ∈ [− 2π3 ,

2π
3 ]. Therefore the smaller angle between l12 and l23 satisfies

ψ123 = π − θ > π
3 , for all 0 < l12, l23 ≤ δ and l13 > δ. Hence, whenever we have

two edges eij and eik in a connectivity graph that share a vertex vi in such a
way that there is no edge between vertices vj and vk, then

ψj,i,k , cos−1
(
< xj − xi, xi − xk >

‖xj − xi‖‖xi − xk‖

)

>
π

3
(2)

Now, denote by SN the ”star graph” in GN i.e. the graph which has N − 1
vertices v2, v3 . . . vN of degree 1 and one vertex v1 with degree N − 1. An
example of such a graph is shown in Figure 3.a. Also denote by ♦5 and ♦6, the
graphs in G5 and G6 respectively, as drawn in Figures 3.a and 3.b.

Figure 3: Graphs ♦5, ♦6 and S7, that are not connectivity graphs

Proposition 2.1 The graphs ♦5 ∈ G5 and ♦6 ∈ G6 do not belong to G5,δ and
G6,δ respectively.

Proof: Suppose that to the contrary ♦5 ∈ G5,δ then there exists some
realization F = (x1, x2, · · ·x5) ∈ C

5(R2) such that Φ5(F) = ♦5. From Equation
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2 it follows that the angles ψ415, ψ512, ψ123, ψ235, ψ534 and ψ341 are all greater
than π

3 . Therefore,

ψ415 + ψ512 + ψ123 + ψ235 + ψ534 + ψ341 > 6
(π

3

)

= 2π

But since x1, x2, x3, x4 ∈ R2 are vertices of a polygon of 4 sides, ψ415 + ψ512 +
ψ123 + ψ235 + ψ534 + ψ341 = 2π which is a contradiction. Therefore ♦5 6∈ G5,δ.

Similarly if we assume that ♦6 ∈ G6,δ then by a repeat of the above argument
we get ψ416+ψ163+ψ365+ψ652+ψ452+ψ145+ψ143+ψ436+ψ632+ψ325+ψ521+
ψ214 > 12

(
π
3

)
= 4π. However from the condition that x1, x2, · · · , x6 ∈ R2 are

vertices of a polygon of 6 sides, this sum should be exactly equal to 4π, which
is a contradiction. Therefore ♦6 6∈ G6,δ.

Proposition 2.2 SN ∈ GN does not belong to GN,δ for N > 6.

Proof: Suppose to the contrary, SN ∈ GN,δ. If deg(v1) = N − 1, and
(x1, · · ·xN ) ∈ CN (R2) is a realization then ψi,1,j >

π
3 for all 2 ≤ i, j ≤ N . We

have, ψ2,1,3+ψ3,1,4+· · ·+ψN−2,1,N−1+ψN−1,1,N+ψN,1,2 > (N−1)π/3. IfN > 6
then this sum is strictly greater than 2π. However by the given setup, this sum
should be exactly equal to 2π. Therefore, by this contradiction SN 6∈ GN,δ for
N > 6.

There are of course many other examples of realizable and non-realizable
connectivity graphs. If a graph is completely disconnected, it means that the
distance between any two agents in the formation is separated by more than δ.
This can easily be achieved by placing the vertices one by one in such a way
that xi does not belong to

⋃i−1
j=1 Bδ(xj), where Bδ(x) is the closed ball of radius

δ centered at x. This observation can be further generalized as follows.

Lemma 2.1 A graph G ∈ GN,δ if and only if each of its connected component
Gi ∈ GMi

is realizable in some GMi,δ, Mi < N .

We omit a formal proof here for brevity but the concept is easy to under-
stand. We saw earlier that completely disconnected graphs are trivially real-
izable by placing the agents further than δ from one another. If G ∈ GN has
many disjoint connected components, say {Gi}, we can place each connected
component ’far away’ from all other components so that none of the agents in
one component can sense agents in other connected component. By this con-
struction we have a realization for G if and only if all Gi have realizations in
their respective spaces GMi,δ.

Theorem 2.1 GN,δ is a proper subspace of GN if and only if N ≥ 5.

Proof: In order to prove that GN,δ is a proper subspace of GN for some N ,
it is enough to show that Φ : CN (R2) → GN is not onto. Therefore we need
to provide a graph G ∈ GN such that Φ−1(G) = ∅. From Proposition 2.1, we
have examples of graphs that are not realizable in G5,δ and G6,δ. For N ≥ 7 the
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star graphs SN of Proposition 2.2 provide the examples of graphs that cannot
be realized as connectivity graphs in GN,δ. This proves that GN,δ is a proper
subspace of GN if N ≥ 5.

To prove that every graph in GN , for N < 5, is realizable in GN,δ, we have
to enumerate all possible graphs for N < 5 and give realizations for each graph.
Since we are dealing with a small number N(< 5), the enumeration strategy
works well. The number of possible graphs to check can be further reduced by
noting that we need to consider only connected graphs. The justification for
this comes from Lemma 2.1 given above. In fact, from [8] we know what these
graphs are, and they together with their realizations are given in Figures 4 and
5, which completes the proof.

Figure 4: Possible realizations for all G ∈ GN,δ for N ≤ 3

Figure 5: Possible realizations for all connectivity graphs in G4,δ.

Corollary 2.1 If each connected component Gi of a graph G ∈ GN belongs to
GMi

, Mi < 5 then the graph has a realization in GN,δ.

Formations can produce a wide variety of graphs for N vertices. This in-
cludes graphs that have disconnected subgraphs or totally disconnected graphs
with no edges. However the problem of switching between different formations
or of finding interesting structures within a formation of sensor range limited
agents can only be tackled if no sub-formation of agents is totally isolated from
the rest of the formation [4]. This means that the connectivity graph G(t) of
the formation F(t) should always remain connected (in the sense of connected
graphs) for all time t. For notational convenience we use GcN,δ ⊆ GN,δ ⊆ GN to
denote the set of all connected graphs of N vertices that satisfy the connectivity
condition of the above definition for sensor range δ.
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3 Geometric Structure of Connectivity Graphs

In this section we produce some results about the geometric structure of connec-
tivity graphs. We will see that the graphs are made up of atomic graphs which,
when combined in a certain way, produce more complex graphs. This decom-
position will prove to be helpful in order to construct a decentralized method of
obtaining a simplicial structure, buried inside the graph. This simplicial struc-
ture will consequently be used to associate a topological characterization to the
connectivity graph.

Definition 3.1 (Image of a formation in R2) If a given formation F =
(x1, x2, . . . xN ) ∈ CN (R2) has the connectivity graph G = (V, E) = ΦN (F(t)),
then each edge ek = {vk1 , vk2} ∈ E can be mapped to R2 by a map fk : R→ R2
given by fk(s) = sxk1 + (1 − s)xk2 for s ∈ [0, 1]. We call the image of the
mapping fk, the image of the edge in R2. The image of a formation, IF ⊂ R2
can be defined as the union of the images of all edges in the connectivity graph
of the formation.

IF =
⋃

ek∈E

fk([0, 1]) ⊂ R2. (3)

Note that the image is constructed by mapping each vertex vi of the graph to
its position xi and each edge ek = {vk1 , vk2} to a line segment sxk1 +(1−s)xk2 ,
for s ∈ [0, 1], in R2. If it is clear from the context, what formation is under
consideration, we will often write IF as IG, where G = Φ(F).

Sometimes it will be convenient to describe the image of a subgraph H =
(EH ,VH) of the connectivity graph G of formation F , where EH ⊂ E and VH ⊂
V. In this case, we refer to the image of the subgraph H as

IH =
⋃

ek∈EH

fk([0, 1]) ⊂ R2, H ⊆ G = ΦN (F) ∈ GN,δ. (4)

The image is thus what a graph would “look like” if drawn in the plane.
Note that this is different from the concept of planar graphs [9] or imbedding
graphs in R2 where edges are not necessarily mapped to straight lines. Two
edges ei, ej ∈ E of a graph are said to be crossing if fi(s) = fj(t) for some
s, t ∈ (0, 1) and the set fi([0, 1]) ∩ fj([0, 1]) has dimension 0. According to this
definition, edge intersection at some vertex of the two edges does not count as
a crossing. The condition that the intersection set is of dimension 0, rules out
edge intersections of collinear points. For convenience denote by ei n ej = true,
if ei, ek ∈ E are crossing edges. Given a formation F and its connectivity
graph Φ(F) = G = (E ,V), let E× ⊆ E be the set of all crossing edges, and
V ⊇ V× = {v ∈ V | v ∈ e for some e ∈ E×}, then H× = (E×,V×) is the subgraph
of G made up of all crossing edges of the connectivity graph. We denote by
HM = (E \ E×,V), the subgraph of G consisting of all non-crossing edges so that
G = H× ∪HM.

It should moreover be noted that the points in the image IG can be cate-
gorized as smooth or non-smooth, where smoothness is defined in the setting
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U1
U2 U3

Figure 6: Crossing Generators.

of smooth manifolds. Any point x in the image that is not one of the robot
positions {xi}

N
i=1 or the crossing points is smooth, i.e. there always exists a

small neighborhood Bε(x), and a homeomorphism f : Bε(x) ∩ IG → R.

Proposition 3.1 An image of a formation of 4 vertices has a pair of crossing
edges only if its connectivity graph is isomorphic to either U1,U2,U3 as shown
in Figure 6.

Proof: From the Figures in 5, we see that only those connectivity graphs
that are isomorphic to the graphs in Fig 6, namely those in 5.a 5.c and 5.d can
be realized with crossing edges. For all other graphs in Figure 5, any attempt
to create an image with crossing edges results in a violation of the constraints
that define these graphs.

The three graphs U1,U2,U3 are called the crossing generators of all connec-
tivity graphs. If G is a connectivity graph of a formation F , and has two edges
e1, e2 such that e1 n e2 = true, then there always exists a subgraph of G that
contains e1 and e2 and is isomorphic to one of the crossing generators U1,U2 or
U3. We now define the following operation.

Definition 3.2 (∆-Amalgamation of crossing generators) If Ui,Uj ∈ G4
are two crossing generators, H ⊂ Ui and H

′ ⊂ Uj are subgraphs s.t. H,H
′ ' K3

(the complete graph on 3 vertices), and there is an isomorphism ∆ : H → H ′

between the respective subgraphs, then their amalgamation (as standard amal-
gamation of two graphs [9]) according to the isomorphism ∆ is called a ∆-
amalgamation, denoted by Ui ∗∆ Uj.

In the context of connectivity graphs of formations, ∆ - amalgamation 1

is used as a description for unions of the type,
⋃

i IGi
, where each Gi ⊆ G,

each Gi is a valid connectivity graph in G4,δ and each Gi ' Uj for some 1 ≤
j ≤ 3. As explained in later sections, such amalgamations help characterize
the geometrical constraints that give rise to crossing edges and non-smooth
points in the image of a connectivity graph. They are used as an encoding
method to describe the subgraph H× = (E×,V×) ⊆ G made up of crossing
edges. Therefore, we explain next, the kind of ∆-amalgamations appropriate
to facilitate this encoding process, and hence the concept of a well-defined ∆-
amalgamation.

1The letter ∆ in the notation is used to emphasize that all amalgamations are done over
triangular subgraphs.
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U2 ∗∆ U2 U2 ∗∆ U2

Figure 7: Different ∆-amalgamations of U2 and U2. The subgraphs involved in
the ∆-amalgamations are shaded in gray.

It should be emphasized that there can be several ways to obtain ∆- amal-
gamations between any two crossing generators, depending on the choice of
H and H ′. Examples of such amalgamations are illustrated in the Figure 7,
where the two crossing generators, both isomorphic to U2 produce two differ-
ent ∆- amalgamations. The subgraphs involved in the ∆-amalgamations are
shaded for ease of visualization. It should also be emphasized that every such
∆- amalgamation is not desirable. A sufficient condition for a ∆-amalgamation
Gi1 ∗∆ Gi2 to be well- defined is that Gi1 ∗∆ Gi2 be a valid connectivity graph
in G5,δ. Generalizing this for an arbitrary number of amalgamations, if

Gi1 ∗∆ Gi2 ∗∆ . . . Gik
︸ ︷︷ ︸

(k−1)−amalgamations

∈ G4+k,δ (5)

then the operation is well defined. Now consider the examples in the left-half
of Figure 8. The three examples can be described by U1 ∗∆ U1, U2 ∗∆ U2 and
U3 ∗∆ U2 ∗∆ U3 from top to bottom, and can nicely encode their respective
subgraphs, that contain the crossing edges. The graphs in Figures 8.a and 8.c
are not valid connectivity graphs. The constraints dictated by the respective
graphs cannot result in valid formations in the configuration space. Similarly,
the ∆-amalgamation drawn in Figure 8.e may or may not be valid. However,
if we consider the graphs drawn on the right in Figures 8.b, 8.d and 8.f, the
graphs are not only valid connectivity graphs but their crossing edges can also
be encoded by the ∆-amalgamations described earlier. Based on this observation
we define the following.

Definition 3.3 (Closure of a ∆-amalgamation) Let G1 = (V1, E1), G2 =
(V2, E2) denote two subgraphs of G. Let V̄ = V1∪V2, Ē = {(vi, vj) | vi, vj ∈ V̄ }
and Ḡ = (V̄ , Ē). If G1 ∗∆ G2 is a ∆-amalgamation of G1 and G2, then the
Closure of G1 ∗∆ G2 is defined as

G1 ∗∆ G2 = (G1 ∗∆ G2) ∪ Ḡ.

In Figure 8, the graphs drawn on the right are closures of the graphs drawn
on the left. If Ḡ = ∅ then the ∆-amalgamation is equal to its closure. The
graphs shown in Figure 7 and Figure 8.e can be such examples. We now give
the following definition of a well-defined ∆-amalgamation.
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(a).(a). (b).

(c). (d).

(e). (f).

Figure 8: Examples of ∆-amalgamations (a,c,e) and their closures (b,d,f).

Definition 3.4 (Well-defined ∆-amalgamation) A ∆-amalgamation of two
subgraphs G1, G2 of a graph G = H× ∪HM, denoted by G1 ∗∆G2 is well defined
if

G1 ∗∆ G2 = (G1 ∗∆ G2) ∪ Ḡ ∈ G5,δ,

and Ē ∩ E× = ∅.

In other words, a ∆-amalgamation is well-defined if it does not differ from its
closure by any crossing edges. The ∆-amalgamation operation can be repeated
to generate a whole family of graphs from the crossing generators, and is well-
defined if the resulting graph’s closure does not differ by any crossing edges. If
we let Σ = σ1.σ2. . . . σK be a finite string defined over {1, 2, 3}, then we denote
a member of this family as:

GΣ = Uσ1 ∗∆ Uσ2 ∗∆ . . . ∗∆ UσK
(6)

If we have repeated ∆-amalgamations of subgraphs of a connectivity graph, as
in (5), there always exists a finite string Σ such that

GΣ ' Gi1 ∗∆ Gi2 ∗∆ . . . Gik ⊆ Gi1 ∗∆ Gi2 ∗∆ . . . Gik ∈ G4+k,δ (7)

Each well-defined repeated ∆-amalgamation, as defined in (7), is called an
Atomic Crossing Graph. Let IGΣ denote the image of a atomic crossing graph by
referring to its isomorphic graph GΣ, when the details of the ∆-amalgamations
is clear from context.
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Proposition 3.2 There exist a set of atomic crossing graphs {GΣj
}j∈J such

that
IH×

⊂
⋃

j∈J

IGΣj
⊆ IG ⊂ R2, (8)

where J is some finite indexing set, and each x ∈
(

IGΣi
∩ IGΣj

)

\ {xk}
N
k=1 for

i, j ∈ J , is smooth.

Proof: With slight abuse of notation, let e ∈ G = (E ,V) denote that e ∈
E . If ei n ej = true, then denote by Hq(ei, ej) the subgraph of G such that
Hq(ei, ej) ' Uq for some 1 ≤ q ≤ 3 and ei, ej ∈ Hq(ei, ej). Also denote by
EΣj

the set of edges for the graph GΣj
. We now give the following algorithm to

provide a constructive way of obtaining the atomic crossing graphs.

Algorithm 3.1 .

A j ← 0

B E× = {e ∈ E | en e′ = true for some e′ ∈ E}

C while E× 6= ∅

1. j ← j + 1

2. k ← 1

3. Pick em ∈ E×

4. Pick ep ∈ E× such that em n ep = true

5. E× ← E× \ {ep, em}

6. σk = argmin1≤q≤3 (Hq(em, ep))

7. Σj ← σk

8. GΣj
← Hσk

(em, ep)

9. Ej◦ = {e ∈ E× | e ∈ Hσk
(em, ep)}

10. E× ← E× \ Ej◦

11. Ej× = {e ∈ E× | en el = true for some el ∈ EΣj
}

12. while Ej× 6= ∅

(a) Pick er ∈ Ej×
(b) Pick es ∈ EΣj

such that er n es = true

(c) E× ← E× \ {er, es}

(d) σk+1 = argmin1≤q≤3 (Hq(er, es))

(e) Σj ← Σjσk+1 = σ1σ2 . . . σkσk+1
(f) GΣj

← GΣj
∗∆ Hσk+1

(er, es)

(g) Ej◦ = {e ∈ E× | e ∈ Ej× ∧ e ∈ Hσk+1
(er, es)}

(h) E× ← E× \ Ej◦
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(i) Ej× = {e ∈ E× | en el = true for some el ∈ EΣj
}

(j) k ← k + 1

13. end

D end

The algorithm can be explained as follows. First get the set E× of all crossing
edges of the graph (Step B). Execute the algorithm until all crossing edges are
taken care of, i.e. removed from E×. Start by picking randomly a pair of crossing
edges em and ep in E×. Next, obtain the maximal subgraph Hσk

(em, ep) of G
that contains the two edges, such that it is isomorphic to one of the crossing
generators (Steps C.6 · · · C.8). This gives the starting point for generating
an atomic crossing graph. Delete all edges in E× that are also contained in
Hσk

(em, ep). Next, find all edges in E× that cross with any edge in Hσk
(em, ep)

(Step C.11). Now, pick an edge from this set and one of its crossing edges,
say er and es. The pair of crossing edges will again span a maximal subgraph
Hσk+1

(er, es) isomorphic to one of the crossing generators (Step C.12.d). This
new subgraph will always intersect the previously found subgraph Hσk

(em, ep)
over a subgraph isomorphic to K3. This lets us glue the two subgraphs together
by a ∆-amalgamation operation (Step C.12.f). Again, remove the crossing edges
that are part of the newly found edge set Ej◦ (Steps C.12.g, k). Next, find the
crossing edges that cross any edge of the resulting ∆-amalgamation. Now,
repeat once again the process of picking randomly a pair of crossing edges,
finding their crossing generator and gluing it by repeated ∆-amalgamations.
This process continues until no crossing edge remains that crosses any edge of
the resulting repeated ∆-amalgamation. Delete all crossing edges that are used
in this construction. In this way we get our first atomic crossing graph GΣ1 .
Now, go back to the main loop and repeat the same process for any remaining
crossing edges to get a whole family of atomic crossing graphs GΣ1 ,GΣ2 · · · GΣj

,
until E× = ∅.

Since there are only finitely many crossing edges, this algorithm always
terminates in less than |E×|/2 number of ∆-amalgamations. By executing
this algorithm, it is clear that all crossing edges are eventually absorbed into
one of GΣi

in a finite number of steps so that H× ⊂ ∪j∈JGΣj
, and hence

IH×
⊂
⋃

j∈J IGΣj
⊆ IG ⊂ R2.

The above discussion gives a decomposition of connectivity graphs in terms
of crossing and non-crossing edges. An example of such decomposition is given
in Figure 9. These properties will become useful for obtaining a simplicial repre-
sentation of connectivity graphs, which will subsequently help in understanding
the “topological shape” of formations as discussed in the following section.

4 Simplicial Complexes and Connectivity Graphs

It is a well known fact from algebraic topology [10] that the study of topological
shapes of compact closed manifolds is synonymous to the study of triangulations
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G = H× ∪ H∆ = G2,2 ∪ H∆

H∆
H×

G

H∆

G

U2 ∗∆ U2 ' G2,2 ⊃ H×

Figure 9: A connectivity graph and its decomposition in terms of atomic crossing
graphs.

of manifolds. These triangulations are called simplicial complexes [11]. For the
sake of clarity, we here give some background to such objects. A k-simplex is
the smallest convex set that contains k + 1 points in general position 2 in Rk.
A finite collection of simplexes (of dimension less than or equal to n) in Rn is
called a simplicial complex if whenever a simplex lies in the collection then so
does each of its faces, and whenever two simplexes intersect, they do so in a
common face. Associated with every simplicial complex K is a combinatorial
object {V,S} where V is the set of vertices of K and S the set of those subsets
of V which span simplexes of K. The dimension of K is equal to the largest of
the dimensions of its simplexes. Moreover, S has the following properties:

1. Each element of V belongs to S. (A vertex is a 0-simplex.)

2. If S belong to S then so does any nonempty subset of S. (Any face of a
simplex of K is itself in K.)

3. The sets in S are non-empty and have at most dim(K) + 1 elements.

2A set of points are in general position if any subset of them spans a strictly smaller
hyperplane.
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In line with the terminology developed in the preceding sections, K can be
thought of as a realization of {V,S}. However, we will often write K = {V,S}
and overlook this subtle difference.

A simplicial complex of dimension 1 can be thought of as a graph whose
image has no crossing edges. The only non-smooth points in the complex are
the images of the vertices. Therefore, if some appropriate crossing edges are
removed from a connectivity graph, its image is a well-defined simplicial com-
plex. Proposition 3.2 leads to some conclusions along these lines. All points
in the image IHM

are smooth except the vertex points. This makes IHM
a well

defined simplicial complex of dimension 1. Therefore the problem of obtaining a
simplicial representation for the graph is reduced to finding one for IH×

. If the
image of each atomic crossing graph can be converted into a simplicial complex,
by removal of images of crossing edges, then the union of the individual sim-
plicial complexes would be a well-defined simplicial complex, as guaranteed by
Proposition 3.2. Therefore the problem of obtaining a simplicial complex from
a connectivity graph can be solved if each sub-problem of obtaining a simplicial
complex for each atomic crossing graph can be solved.

Definition 4.1 (Simplicial Subgraph) Every connectivity graph G ∈ GN,δ
has at least one subgraph Gs which induces a well defined simplicial complex
KGs

= (V,S). We call Gs a simplicial subgraph of G.

If a pair of vertices S = {vi, vj} defines an edge in Gs then S ∈ S. In other
words every edge induces a 1-simplex in KGs

. The subgraph of non-crossing
edges HM ⊆ G, is also an example of a simplicial subgraph of G.

Definition 4.2 (Maximal Simplicial Subgraph) A subgraph G∗ ⊂ G is said
to be a maximal simplicial subgraph of G if there does not exist a simplicial sub-
graph of G that properly contains G∗.

Before developing a method to obtain this maximal simplicial subgraph, a
few points should be noted:

1. In order to preserve maximality, the removal of any non-crossing edge in
the graph is not allowed.

2. Care has to be taken during the removal of crossing edges, as the removal
of one crossing edge may result in the removal of all non-smooth points on
another crossing edge, making the later non-crossing. Therefore the order
in which crossing edges are removed is important.

3. The maximal simplicial subgraph of a connectivity graph is not unique
and depends on the order in which crossing edges are removed.

We begin by considering the problem of obtaining maximal simplicial subgraphs
of atomic crossing graphs.

Proposition 4.1 There exists an algorithm to obtain a maximal simplicial sub-
graph of every atomic crossing graph.

15



Proof: Let an atomic crossing graph G = (E ,V) be isomorphic to GΣ, as given
by 7 or obtained by executing Algorithm 3.1, so that the string Σ = σ1σ2 · · ·σK
gives the order of ∆-amalgamations in the atomic graph,

GΣ ' G = G1 ∗∆ G2 ∗∆ . . . GK ∈ G
c
4+K,δ,

where Gk ' Uσk
for 1 ≤ k ≤ K. Now execute the following algorithm.

Algorithm 4.1 .

1. E∗ ← E

2. G∗ ← (E∗,V)

3. for k = K to 1

(a) E× = {e ∈ Gk | en e′ = true for some e′ ∈ G∗ \Gk}

(b) E∗ ← E∗ \ E×

(c) G∗ ← (E∗,V)

(d) E◦ = {e ∈ G
∗ ∩Gk | en e′ = true for some e′ ∈ G∗ ∩Gk}

(e) if |E◦| = 2 then

i. {e1, e2} ← E◦
ii. E∗ ← E∗ \ e1
iii. G∗ ← (E∗,V)

(f) end

4. end

The algorithm can be explained as follows. In each iteration k of the loop,
first get the edges in the Gk ' Uσk

that intersect any edge of the remaining
graph G∗ \ Gk (Step 3.a). These are all crossing edges in Gk that need not
intersect any other edge in Gk. Remove these edges from E∗ and update G∗

(Step 3.c). Now find any remaining crossing edges in G∗ ∩Gk (Step 3.d). Any
edges found in this step would be a subset of the crossing edges, out of which
the crossing generator was originally constructed by Algorithm 3.1 or by (7). In
fact, only two possibilities can occur. Either both crossing edges are removed
in Step 3.b if they both intersected with some other edges in G∗ \ Gk, so that
|E◦| = 0. Or, both edges are obtained if they only cross each other so that
|E◦| = 2. The case |E◦| = 1 never happens because it needs 2 edges to obtain
a crossing. When |E◦| = 2, removing either of the two edges is equivalent
and we follow the convention of removing the first edge in the set (Step 3.e.ii).
The graph G∗ is again updated. After k iterations of examining the crossing
generators in the backward direction, we obtain G∗ = (E∗,V). We will later
denote it by G∗Σ when the isomorphism GΣ is considered. By construction, the
algorithm fulfills all conditions for maximality as enumerated above. Therefore
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the graph G∗ = (E∗,V) obtained at the end of the algorithm is indeed the
maximal simplicial subgraph of G.

We now give our main result.

Theorem 4.1 A maximal simplicial subgraph G∗ of a connectivity graph G ∈
GN,δ is given by the union,

G∗ =

(
⋃

i

G∗Σi

)

∪HM.

Proof: By Proposition 3.2 any crossing edge of a connectivity graph is con-
tained in some atomic crossing graphGΣi

generated by repeated ∆-amalgamations.
Also by the same result, the intersection of the images of any two atomic cross-
ing graphs GΣi

and GΣj
is made up of only smooth points (except the vertices).

This means that the intersection of the two graphs has only non-crossing edges
in common and the removal of crossing edges in one atomic crossing graph does
not effect the crossing edges in the other graph. If we now obtain the maximal
simplicial subgraph G∗Σi

of each atomic crossing graph GΣi
, it does not result

in the removal of any non-crossing edge in GΣi
∩ GΣj

. Therefore, if we obtain
the maximal simplicial subgraph of each atomic crossing graph by executing
Algorithm 4.1, then their union ∪iG

∗
Σi

is also maximal. Finally, the subgraph
HM contains no crossing edges and is already a maximal simplicial subgraph,
thereby making

G∗ =

(
⋃

i

G∗Σi

)

∪HM,

a maximal simplicial subgraph of G.

While the maximality condition captures the maximal simplicial structure
in the connectivity graph, we can further see that any 3 vertices that span
a triangle in Gs, can span a 2-simplex in the image. Therefore we have the
following.

Definition 4.3 (Maximal Simplicial Complex) MG∗
= (V,S) is the max-

imal simplicial complex spanned by a connectivity graph if:

• S1 ⊆ S, where (V,S1) is the 1-simplicial complex of the maximal simplicial
subgraph G∗ ⊂ G.

• If a set of any three vertices L = {vi, vj , vk} form a cycle in (V,S1) then
L ∈ S

The set of vertices S = {vi, vj , vk}, that form a cycle in G∗ induces a 2-
simplex in K. Therefore MG∗

is a 2-complex made up of:

1. 1-simplexes induced by the edges of the graph

2. 2-simplexes induced by the cycles of 3 vertices of the graph
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Figure 10: A connectivity graph G. Figure 11: The maximal simplicial sub-
graph G∗.

It may happen that MG∗
has no 2-simplexes. In this case the 1-skeleton is the

complex itself case either. MG∗ is in fact the object associated with the topo-
logical shape of the formation. Some comments are appropriate at this point
to explain why we have associated the topological characterization of the for-
mation with the maximal simplicial complex spanned by its connectivity graph.
Compare the lower connectivity graph on 3 vertices in Figure 4 with the graph
in Figure 5.b. Both have a cyclic ring-like structure, which apparently makes
them topologically equivalent. However, there is a subtle difference between the
two, if we also desire that this structure is a decentralized multi-agent system.
In the former example, all nodes interact directly with each other, whereas in
the latter any node interacts directly with its two adjacent nodes only. There-
fore the absence of an edge between opposite nodes creates a “hole” in the
topological shape. By the method described in Definition 4.3, there would be
a 2-simplex attached to the image of the graph of Figure 4 to get its maximal
simplicial complex, making it a topological object of genus 0. On the other
hand the maximal simplicial complex of the graph in Figure 5.b. would still
have a hole (genus 1). Definition 4.3 lets us expand this point of view to more
complex graphs. For example, the graph in Figure 10 has 3 holes, each of which
is bounded by 4 nodes or more, as seen in its maximal simplicial complex in
Figure 12. Once we have the simplicial complex of a graph, it can be studied
using tools from standard algebraic topology to obtain its genus, fundamental
groups, homological groups, etc. This point of view of topological character-
ization is also consistent with Čech homology based on set intersections [6].
The process of ignoring the crossing edges corresponds to ignoring simplexes of
higher dimension in the connectivity graph, which simplifies the computations.
Furthermore, the characterization of the topological shape in terms of “holes”
gives an indication of the absence or presence of coverage in an area enclosed
by a network of spatially distributed sensors. Therefore, the connectivity graph
and its maximal simplicial complex are computationally cheap tools to answer
the same question without computing set intersections, as required by Čech ho-
mology theory. However, before we give this type of topological characterization
to connectivity graphs, we should investigate the issue of uniqueness for such
characterization.
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Figure 12: The maximal simplicial complex MG∗ spanned by the connectivity
graph of Figure 10.

5 Uniqueness of Topological Characterization

It should be noted that maximal simplicial subgraph of a connectivity graph
(and therefore the maximal simplicial complex) need not be unique and depends
on the order in which crossing edges are removed, i.e. the order in which ∆-
amalgamations are repeated to obtain each atomic crossing graph. For example,
consider the situation in Figure 9. Starting with the connectivity graph G shown
there, we can obtain a decomposition of the graph G using atomic crossing
generators by executing Algorithm 3.1. It can be seen that A maximal simplicial
subgraph can be obtained by executing Algorithm 4.1. The resulting graph
G∗1 is depicted in Figure 13.a. However, upon close examination we can see
that the subgraph G∗2 shown in Figure 13.b is also maximal. This should not
come as a surprise, as different maximal simplicial graphs emerge as a result
of the removal of crossing edges in different order. Now, consider the maximal
simplicial complexes associated with the two maximal simplicial subgraphs, as
shown in Figures 13.c and 13.d. It is obvious from the figures that the two
simplicial complexes differ in their fundamental groups and hence in genus. The
maximal simplicial complex of the subgraph obtained as a result of executing
Algorithm 4.1 has genus 1, whereas the one depicted in Figure 13.d has a trivial
fundamental group and hence genus 0. 3 Therefore, the choice exercised in
removal of crossing edges makes a difference in the topological characterization
of the connectivity graph. As explained above, the presence or absence of a
“hole” in the simplicial complex is an indicator of presence or absence of direct
interaction between nodes of a connectivity graph. Since we are interested in
obtaining a topological characterization that truly captures the lack or presence
of direct interactions, we must modify Algorithms 3.1 and 4.1. For obtaining
such a modification, we define a quotient space on ∆-amalgamations as follows.

We first define the following equivalence relation. Let G1∗∆G2 and H1∗∆H2
be two well-defined ∆-amalgamations, then G1 ∗∆ G2 ∼ H1 ∗∆ H2 if and only
if:

1. Gi ' Hi ' Uσi
for some σi ∈ {1, 2, 3}, and for i = 1, 2.

3For details on how to calculate fundamental groups of simplicial complexes, see [11, 10].
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(a). G
∗

1
(b). G

∗

2

(c). MG∗

1 (d).MG∗

2

Figure 13: Two maximal simplicial complexes of the same connectivity graph

2. G1 ∗∆ G2 ' H1 ∗∆ H2 ' Uσ1 ∗∆ Uσ2 .

3. Number of non-smooth points in IG1∗∆G2 is equal to the number of non-
smooth points in IH1∗∆H2 .

The members of an equivalence class under this equivalence relation is denoted
by [G1∗∆G2]. We also define a quotient map π that sends G1∗∆G2 to [G1∗∆G2].
If we denote the space of all well-defined ∆-amalgamations between crossing
generators as U ∗∆ U , then the resulting quotient space can be denoted by
U ∗∆ U/∼. By enumeration techniques it can be seen that the quotient space
is composed of only 7 equivalence classes, as shown in figure Figure 14. The
details of this enumeration are omitted here for brevity.

Now let us define a map ϕ : U ∗∆ U/∼ −→ G5 as depicted in Figure 15.
This map is used to remove crossing edges whenever the crossing edges of a
connectivity graph are captured as atomic crossing graphs. Since, π is also a
graph isomorphism, it makes sense to consider the map π−1|ϕ(.) which translates
the edge removal back to the original graph. We have the following commutative
diagram.

U ∗∆ U
ϕ∗
−→ G5


yπ

x

π−1

U ∗∆ U/∼
ϕ
−→ G5

Thus, if G1, G2 ⊂ G, and G1 ∗∆ G2 is well-defined then, we can obtain a
maximal simplicial subgraph of G1 ∗∆ G2 using the map ϕ∗ = π−1 ◦ ϕ ◦ π, i.e.
ϕ∗(G1 ∗∆G2) is a maximal simplicial subgraph of G1 ∗∆ G2. For repeated well-
defined ∆-amalgamations, of the type given in (7), the Algorithm 4.1 can be
modified as follows.
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Figure 14: Members of the quotient space U ∗∆ U/∼

Algorithm 5.1 .

1. G∗ ← ∅

2. for k = K to 2

(a) G∗ ← G∗ ∪ ϕ∗(Gik−1 ∗∆ Gik)

3. end

Therefore the maximal simplicial subgraph of Gi1 ∗∆ Gi2 ∗∆ . . . Gik ∈ G4+k,δ
can be obtained by

k−1⋃

j=1

ϕ∗(Gij ∗∆ Gij+1)

The maximal simplicial subgraph obtained in this way is free of the inconsisten-
cies explained earlier. One can now proceed to compute all sorts of topological
invariants associated with the simplicial complex.

6 Applications of the Topological characteriza-

tion of connectivity graphs

The geometric structure and topological characterization of the connectivity
graphs of multi-agent formations given above, can be used to obtain certain
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global properties of formations using decentralized algorithms, suitable for im-
plementation on scalable, totally decentralized multi-agent systems. It will be
appropriate to mention, that the entire machinery presented here for decom-
posing connectivity graphs into simplicial complexes becomes irrelevant, if the
computations are performed in a centralized manner. The centralized method
of obtaining the simplicial subgraph can be much simpler and need not have
knowledge of the local geometrical structure obtained above. The maximal sim-
plicial subgraph G∗ of a connectivity graph G ∈ GN,δ can therefore be obtained
using a decentralized algorithm. The detection of genus is also implementable as
a decentralized algorithm. Since the fundamental group π1(IMG∗ ) is isomorphic
to the edge group E(MG∗) of the triangulation, we can base our method on the
reduction of loops inside MG∗ , according to the equivalence rules of E(MG∗)
[10]. Using this approach, one can implement a decentralized algorithm to find
out ifMG∗ has genus 0 or not. [12] The role of low-complexity formations called
δ-chains (Hamiltonian paths) has moreover been studied and emphasized in a
related work by the authors [13]. Decentralized algorithms for obtaining these
δ-chains are of considerable interest to us and are a subject of current research.
See Appendex for some preliminary results.
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7 Conclusions

The connectivity graphs of formations, that arise due to sensory or communica-
tion limitations of individual agents have a rich set of structural and topological
properties. These graphs are an important abstraction, as they let us capture
various structural properties of the formations without referring to the actual
positions of the agents. As the number of agents in a formation is increased
beyond 4, numerous examples of graphs are obtained for which a realization is
impossible that satisfy the given constraints. This tells us to be careful when us-
ing graph theoretic methods in even moderately large multi-agent systems. This
work also gives us insight into the construction of various distributed algorithms
which can be mapped on a decentralized multi-agent system.
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A Appendex

We have some preliminary results that suggest that the ability to obtain a
simplicial representation of graphs lets us obtain δ-chains for an important class
of connectivity graphs, namely the graphs whose maximal simplicial complex
has genus 0. Some snapshots of the algorithm are given below convince the
reader of the utility of the tools developed in this paper. As shown in the
figures, the maximal simplicial subgraph is obtained during the initial steps of
the algorithm, followed by the determination of genus (i.e. whether it has a
genus 0 or not), and finally the construction of the δ-chain.

Figure 17: A connectivity graph. Figure 18: Maximal simplicial subgraph
of connectivity graph of 17.

Figure 19: Boundary detection Figure 20: Resulting δ-chain.
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