
Mobile Netw Appl (2009) 14:322–335
DOI 10.1007/s11036-009-0153-x

Automatic Generation of Persistent Formations
for Multi-agent Networks Under Range Constraints

Brian S. Smith · Magnus Egerstedt · Ayanna Howard

Published online: 28 January 2009
© Springer Science + Business Media, LLC 2009

Abstract In this paper we present a collection of graph-
based methods for determining if a team of mobile
robots, subjected to sensor and communication range
constraints, can persistently achieve a specified forma-
tion. What we mean by this is that the formation, once
achieved, will be preserved by the direct maintenance
of the smallest subset of all possible pairwise inter-
agent distances. In this context, formations are defined
by sets of points separated by distances corresponding
to desired inter-agent distances. Further, we provide
graph operations to describe agent interactions that im-
plement a given formation, as well as an algorithm that,
given a persistent formation, automatically generates a
sequence of such operations. Experimental results are
presented that illustrate the operation of the proposed
methods on real robot platforms.

Keywords multi-agent network · formations ·
formation control · graph-based control ·
decentralized control · persistent graphs ·
rigid graphs · graph operations

B. S. Smith (B) · M. Egerstedt · A. Howard
School of Electrical and Computer Engineering,
Georgia Institute of Technology, Atlanta, GA, USA
e-mail: brian@ece.gatech.edu

M. Egerstedt
e-mail: magnus@ece.gatech.edu

A. Howard
e-mail: ayanna.howard@ece.gatech.edu

1 Introduction

Due to recent developments in mobile sensing, compu-
tation, and actuation, formation control for multi-agent
networks has received significant attention during the
last decade. (For example, see [1–14] for a recent,
representative sample.) In fact, recent research sug-
gests the use of graph-theoretic structures to represent
formations, where vertices represent agents, and edges
represent specific inter-agent distances to be main-
tained through decentralized control laws (see [15–26]).

This work is part of a National Aeronautics and
Space Administration (NASA) project to implement a
multiple-robot system for research in Antarctica. In this
project, a team of geologists at NASA should be able
to use a mobile sensor network composed of mobile
robots to take sensor readings across ice shelves in
order to better understand the impacts of global climate
change on the ice shelves. According to specifications,
the network should be able to automatically deploy
and distribute itself across an area of interest with a
user-defined resolution, and to achieve specific, user-
defined geometric relationships among the members of
the network. The pre-Antarctic stages of this project
will be implemented with a prototype multiple-robot
system, shown in Fig. 1.

Based on the NASA project as a motivating appli-
cation, we will study graph-based abstractions of for-
mations, and we define a target formation as a set of
pairwise, desired inter-agent distances associated with a
complete graph, i.e., these distances are specified with
respect to all pairs of agents. However, it may not be
the case that all inter-agent distances are needed, which
leads to the study of so-called persistent formations [27].

Mobile Netw Appl (2009) 14:322–335 323

Fig. 1 The multi-robot network. This network is used in the pre-
Antarctic stages of this project. Its mobility and sensor abilities
approximate the Antarctic network sufficiently to assemble and
deploy formations using the same automatic tools

In a persistent formation, each agent is assigned a set
of constraints, which are specific inter-agent distances
to maintain. These constraints are oriented in the sense
that each constraint is the responsibility of a single
agent rather than two agents. Maintaining a formation
may not require all inter-agent distances to be directly
maintained by the control laws. Persistent formations
typically involve only a proper subset of all possible
inter-agent constraints. In [28], graph operations are
proposed that, through successive applications, pro-
duce a graph corresponding to a persistent formation.

We want to use such operations in order to build
persistent formations in the presence of constraints on
the effective communication and sensing distances. In
fact, these types of constraints were not considered in
[28], and the main contribution of this paper is the
sequential construction of persistent formations that
respect the inter-agent range constraints.

The outline of this paper is as follows: In Section 2,
we recall some of the basic definitions needed to set
up the problem, followed by a method for determining
if a specific target formation is rigidly feasible with
respect to the range constraints, in Section 3. Next, in
Section 4, we show how the same method for determin-
ing rigid feasibility also determines persistent feasibility.
We also present a set of graph operations for building
persistent formations with respect to the range con-
straints, as well as an algorithm for automatically gen-
erating a sequence of such operations given a persistent
formation graph (Section 5). The experimental results
are discussed in Section 6, followed by the conclusions
in Section 7.

2 Preliminaries

In this section, we review some of the basic assumptions
and terminology needed for the development in later
sections. The main object of interest is a persistent
formation in which individual robots are responsible
for maintaining specific inter-agent distances. Qualita-
tively, we say that a formation is persistent if, provided
that all agents ensure that the distance constraints they
are responsible for are satisfied, then the formation is
preserved in the sense that all pairwise distances are
preserved [27].

There are two problems addressed in this paper:

1. Determine if a target formation is persistently feasi-
ble given the maximum sensing and communication
range of the agents.

2. If the formation is persistently feasible, gener-
ate a constraint topology for implementing the
formation.

2.1 Network trajectories

We assume that the multi-agent network consists of
n agents indexed by N = {1, . . . , n} such that i ∈ N is
the index of agent i. We define T = [0, ∞) as the time
interval over which the system is defined. ∀i ∈ N, we
define a state xi : T �→ R2 such that xi(t) represents
the position of agent i at time t ∈ T. We represent
the trajectory of the network as X : T �→ R2n such that
X (t) = [

x1 (t)T , . . . , xn (t)T]T
. We further assume that,

∀i ∈ N, xi is continuously differentiable with respect to
time and, as such, so is X.

2.2 Proximity range �

To characterize the sensing and communication abili-
ties of the agents, a proximity range � ∈ R+ is defined,
within which agents can sense and communicate with
each other. We assume that any pairs of agents (i, j) ∈
N × N can directly sense and communicate with each
other at time t if and only if they are within � of each
other, i.e. ‖xi(t) − x j(t)‖ ≤ �.

2.3 Target formations

We assume that the desired inter-agent distances are
defined by a set of n given, relative positions pi ∈
R2 ∀i ∈ N such that ‖pi − pj‖ describes the desired
distances between all pairs of agents (i, j) ∈ N × N.
These positions define a target formation P ∈ R2n such
that P = [

pT
1 , . . . , pT

n

]T .

324 Mobile Netw Appl (2009) 14:322–335

2.4 Network graph

For the network of size n, we define graph Gn = (V, E)

such that

• V = {v1, . . . , vn} is the vertex set, and
• E ⊂ V × V is the edge set, where each edge in

(vi, v j) ∈ E is an ordered-pair of vertices such that
vi
= v j.

In this paper, we utilize a notation such that, for a graph
G = (V, E), V(G) = V and E(G) = E.

The network graph and a target formation P defines
a weight function δ : E(Gn) �→ R+. Here, δ assigns to
each edge (vi, v j) ∈ E(Gn) the desired length, or dis-
tance, between the corresponding points defining P
such that δ(vi, v j) = ‖pi − pj‖.

The network graph Gn can be thus be thought of
as representing a set of constraints associated with a
subset of all pairs of agents, which is why we will refer
to this as the constraint topology of the network. Also,
each edge (vi, v j) ∈ E(Gn) implies that agent i must
maintain a constant distance ‖pj − pi‖ from agent j. As
such, each edge in Gn models a constraint of the net-
work. The direction of the edge implies which agent has
the constraint. For example, ∃(vi, v j) ∈ E(Gn) implies
that the control law of agent i depends on agent j.

3 Rigid feasibility and rigid graph generation:
the modified “pebble game”

In this section, we present rigid feasibility in terms of
range constraints. First, we present rigidity as it has
been defined in previous work. Then, we define rigid
feasibility under range constraints and provide an algo-
rithm for determining if a given target formation P is
rigidly feasible.

3.1 Rigidity

A trajectory X represents the continuous motion of
a multi-agent network. For a given target formation
P, we define a edge-consistent trajectory as one such
that ‖xi(t) − x j(t)‖ = ‖pi − pj‖ ∀((vi, v j), t) ∈ E(Gn) ×
T. We define a rigid trajectory as one such that ‖xi(t) −
x j(t)‖ = ‖pi − pj‖ ∀(i, j, t) ∈ N × N × T, i.e. the net-
work stays in formation during the trajectory. Thus, a
rigid trajectory represents a rigid motion of the net-
work. For a given formation P and graph Gn, the multi-
agent network is rigid if and only if all edge-consistent
trajectories of the network are also rigid trajectories. If
a network is not rigid, we say that it is flexible.

1

2 3

4

1

2 3

4

(a) (b)

1

2 3

x

x x

x

x

x x

x

x

x x

x4

(c)

Fig. 2 Rigid and flexible networks. a A flexible network. The
dotted line represents circular motion that agent 4 can perform
and still satisfy its constraint with agent 3. b Agent 4 can move
in a manner that changes its distance to agents 1 and 2. c A rigid
network. If all constraints are satisfied during continuous motion,
then the formation does not change

The rigidity of the network for a target formation P
and network graph Gn implies that the target formation
can be maintained by guaranteeing that the constraints
represented by E(Gn) are maintained. Figure 2 gives
examples of rigid and flexible multi-agent networks.

3.2 Infinitesimal rigidity

Here, we review the concept of infinitesimal rigidity
as presented in [29–31]. The infinitesimal rigidity of a
network is a stronger condition than rigidity in that
all infinitesimally rigid networks are rigid. While some
rigid networks are not infinitesimally rigid, the infinites-
imal rigidity of a network is a much easier condition to
both test for and guarantee through our choice in the
topology of Gn and target formation P.

We assume that xi(t) is continuously differentiable
∀i ∈ N. Since we have defined an edge-consistent tra-
jectory such that the distance between points xi(t) and
x j(t) remains constant all along the trajectory, this im-
plies that, ∀ (

(vi, v j), t
) ∈ E(Gn) × T,

(
xi (t) − x j (t)

)T (
ẋi (t) − ẋ j (t)

) = 0. (1)

Mobile Netw Appl (2009) 14:322–335 325

To define a method of predicting infinitesimal rigid-
ity, we (temporarily) assume that xi(0) = pi ∀i ∈ N.
Under this assumption, the assignment of constant in-
stantaneous velocities ui ∈ R2 ∀i ∈ N such that, ∀i ∈ N,
ẋi(0) = ui satisfies Eq. 1 ∀(vi, v j) ∈ E(Gn) is described
as an infinitesimal motion of the network [31]. Let U ∈
R2n be defined by the infinitesimal motion such that
U = [

uT
1 , . . . , uT

n

]T . Then Eq. 1 is represented in matrix
form ∀(vi, v j) ∈ E(Gn) as

M(P, Gn)U = 0,

where M(P, Gn) is known as the rigidity matrix
[31]. The rigidity matrix has |E(Gn)| rows and 2n
columns. For each edge (vi, v j) ∈ E(Gn), each row mij

of M(P, Gn) represents the equation for that edge as a
2n-vector of the form

mij = (0, . . . , (pi − pj)
T , 0, . . . , 0, (pj − pi)

T , . . . , 0).

(2)

Here, (pi − pj)
T is in two columns for vertex i, (pj −

pi)
T is in the columns for j, and zeroes are elsewhere

[31]. A network with n ≥ 2 points in R2 and a formation
P is infinitesimally rigid if and only if rank(M(P, Gn)) =
2n − 3 [30, 31].

Infinitesimal rigidity implies rigidity, but rigidity
does not imply infinitesimal rigidity [29]. Still, the rigid-
ity matrix is an effective way to demonstrate infinites-
imal rigidity, and thus rigidity, based on the formation
and topology of the network.

3.3 Generic rigidity

It is clear that the rigidity of a network depends both
on the topology and the formation. A generically rigid
graph is an network graph for which there exists a
formation P such that the network is infinitesimally
rigid. Note that generic rigidity is a property of a net-
work graph, not a network graph and a formation, as is
infinitesimal rigidity. Therefore, we refer to generically
rigid graphs as rigid graphs without confusion.

If Gn is rigid, and the network is infinitesimally rigid
with formation P ∈ R2n, we say that P is a generic
formation of Gn. If Gn is rigid, then the generic forma-
tions of Gn form a dense, open subset of R2n [30]. This
implies that, for any generically rigid graph Gn, any
formation P′ can be well-approximated by a generic
formation P such that the corresponding network is
infinitesimally rigid and, therefore, rigid.

3.4 Rigid feasibility

We define rigid feasibility as follows:

Definition 1 A target formation P is rigidly feasible for
a multi-agent network with proximity range � if and
only if there exists a network graph G�

n such that G�
n is

rigid, and δ(e) ≤ � ∀e ∈ E(G�
n).

It is clear that adding edges to a rigid graph cannot
affect its rigidity. A minimally rigid graph is rigid but
does not remain rigid after the removal of a single
edge. By Laman’s theorem [32], a network with agents
defined in R2 with n ≥ 2 vertices is minimally rigid if
and only if

1. it has 2n − 3 edges, and
2. each induced subgraph of n′ ≤ n vertices has no

more than 2n′ − 3 edges.

To generate minimally rigid graphs, we utilize the
“pebble game” algorithm [33], which is an algorithm
for constructing minimally rigid graphs, with a worst
case performance of O(n2) [33]. In the pebble game,
each vertex is represented as having two pebbles,
each pebble representing a degree of freedom for that
vertex. A pebble covering exists if each edge can be
covered by a pebble from a vertex incident to that
edge. To keep track of pebbles, the pebble game works
with a directed graph, where a directed edge (vi, v j)

indicates that edge (vi, v j) is covered by a pebble from
vertex vi. For a given v ∈ V, the pebbles of v can only
cover edges incident to v.

The pebble game starts with a directed graph with no
edges and attempts to add each potential edge one at a
time to the pebble covering in a manner that ensures
the second part of Laman’s theorem is satisfied. Since
the pebbles of each vertex limit the number of edges
directed out of each vertex, this is accomplished by
modifying the directions of both the edge to be added
and the other edges already in the graph. If part 2 of
Laman’s theorem is satisfied, we say that a valid pebble
covering has been found. If a valid pebble covering of
2n − 3 such edges is found, then this implies that the
first part of Laman’s theorem is satisfied and the graph
is minimally rigid. For more detail on the implementa-
tion of this algorithm, see [33].

To test for a minimally rigid graph that satisfies
Definition 1, we modify the pebble game algorithm
so that it only considers edges of length less than or
equal to �. The modified pebble game is described in
Algorithm 1.

326 Mobile Netw Appl (2009) 14:322–335

Algorithm 1 Modified Pebble Game(P, �)

Require: P is a formation of n points
Initialize G�

n such that V(G�
n) := {v1, . . . , vn},

E(G�
n) := ∅

Initialize rigid := false
for all possible edges e = (vi, v j) ∈ V(G�

n) × V(G�
n)

such that δ(e) ≤ � and while rigid = false do
E(G�

n) := E(G�
n) ∪ e;

Rearrange edge directions to try to find a valid
pebble covering;
if a valid pebble covering is not found then

E(G�
n) := E(G�

n) \ e;
end if
if |E(G�

n)| = 2n − 3 then
rigid := true;

end if
end for
return (rigid, G�

n);

The following Theorem 1 states the effectiveness of
the modified pebble game to test for rigid feasibility.

Theorem 1 A target formation P is rigidly feasible for a
multi-agent network with proximity range � if and only
if the algorithm Modified Pebble Game(P, �) returns a
minimally rigid graph.

Proof Definition 1 is satisfied for formation P only
if there exists a rigid graph G�

n such that δ(e) ≤ �

∀e ∈ E(G�
n). This implies the existence of a minimally

rigid graph with the same properties. Assume that G�
n

exists, but that Modified Pebble Game(P, �) fails to
return a minimally rigid graph. Note from [33] that
the unmodified pebble game generates a rigid graph by
considering each edge and adding it to a flexible graph
until it becomes minimally rigid. Therefore, the failure
of Modif iedPebbleGame(P, �) implies that no such
graph can be generated considering only edges such
that their distance in the network would be less than or
equal to �. Since the unmodified pebble game always
returns a minimally rigid graph [33], this implies that
all rigid graphs result in a network with δ(e) > � for
some e ∈ E(G�

n). However, this violates our assump-
tion that G�

n exists. Therefore, the formation is rigidly
feasible only if Modified Pebble Game(P, �) returns a
minimally rigid graph.

If the modified pebble game produces such a mini-
mally rigid graph such that δ(e) ≤ � ∀e ∈ E(G�

n), then
the conditions of Definition 1 are satisfied. ��

4 Persistent feasibility and persistent graph generation

In this section, we present persistent feasibility in terms
of range constraints. First, we present persistence as
it has been defined in previous work. Then, we define
persistent feasibility under range constraints. Further,
we demonstrate that rigid feasibility and persistent fea-
sibility are equivalent. We also show that the modified
pebble game algorithm generates minimally persistent
graphs.

4.1 Persistence

Persistence is a quality of networks that is very closely
related to the concept of constraint consistence. Infor-
mally, we say that constraint consistence means that
all constraints are satisfied as long as all agents satisfy
their individual constraints, i.e., no subset of agents can
satisfy their constraints in a manner which prevents
another agent from satisfying a constraint. Constraint
consistence is determined by the number and orienta-
tion of the constraints. Figure 3 shows constraint con-
sistent and inconsistent networks. For a more rigorous

x1

x3

x4

x2

x1

x3

x4

x2 ?

(a) (b)

x1

x3

x4

x2

x1

x3

x4

x2

(c) (d)

Fig. 3 Persistence example. a A network that is not persistent.
Here, agent 4 can perform circular motion around agent 3. b If
agent 4 moves, agent 2 cannot move in a way that preserves the
distances between agent 2 and agents 1, 3, and 4. c A persistent
network. It is constraint consistent and rigid. Agents 3 and 4 are a
leader–follower pair. d If agent 4 satisfies its constraint, the other
agents maintain formation during continuous motion

Mobile Netw Appl (2009) 14:322–335 327

definition, see [27]. A network is persistent if and only
if it is rigid and constraint consistent [27]. Figure 3c and
d show a persistent network.

We say that a network graph Gn is generically con-
straint consistent if all of its vertices have an out-degree
less than or equal to 2 [27]. This applies to graphs as
well. Thus, we refer to generically constraint consistent
graphs as being constraint consistent graphs.

Similar to generic rigidity, we say that an network
graph Gn is generically persistent if it is generically
rigid and generically constraint consistent. Like generic
rigidity, generic persistence applies to graphs, not net-
works. Therefore, we refer to generically persistent
graphs as persistent graphs without confusion. A persis-
tent graph is minimally persistent if it is persistent and
if no edge can be removed without losing persistence
[27].

4.2 Rigidity, constraint consistence,
and persistence summary

To summarize the topological notions of rigidity, con-
straint consistence, and persistence and their relations,
see Table 1. Rigidity tells us whether or not we have
sufficient edges in our graph to guarantee that the
formation is maintained by only maintaining its edge
lengths. Therefore, in Table 1, Graph 1 is flexible (i.e.
not rigid), while Graphs 2 and 3 are rigid. Note that
rigidity does not depend on the orientation of the edges.
Unlike rigidity, constraint consistence does depend on
the orientation of the edges. While Graph 1 is flexible,
it is constraint consistent, since all vertices have an out-
degree less than or equal to 2. This implies that they
can maintain these edges regardless of how agents 3
and 4 move while respecting the constraint agent 4 has
with agent 3. Still, the formation may deform, since the
graph is flexible. On the other hand, Graph 2 is rigid,
but not constraint consistent. While the maintenance of
the edges would preserve the formation, it is possible

Table 1 Rigidity, constraint consistence, and persistence exam-
ples table

Graph 1 Graph 2 Graph 3

Flexible Rigid
Constraint Consistent Constraint Inconsistent Constraint Consistent

Not Persistent Not Persistent Persistent

for agent 4 to move such that agent 2 cannot maintain
all of these edges, as in Fig. 3. Of the graphs in Table 1,
only Graph 3 is both rigid and constraint consistent,
which makes it the only persistent graph example. The
maintenance of the edges ensures that the formation
does not deform, and all agents can, in fact, maintain
these edges during any edge consistent motion.

4.3 Persistent feasibility

We define persistent feasibility as follows:

Definition 2 A target formation defined by configura-
tion P is persistently feasible for a multi-agent network
with proximity range � if and only if a exists an network
graph G�

n such that G�
n is persistent, and δ(e) ≤ � ∀e ∈

E(G�
n).

For any minimally rigid graph, it is possible to assign
directions to the edges such that the obtained directed
graph is minimally persistent [28]. Therefore, we have
the following Theorem 2 describing necessary and suffi-
cient conditions for a target formation to be persistently
feasible.

Theorem 2 For a multi-agent network with proximity
range �, a target formation P is persistently feasible if
and only if it is rigidly feasible.

Proof If P is rigidly feasible, then, by Definition 1,
there exists a minimally rigid graph G�

n such that the
network is rigid and δ(e) ≤ � ∀e ∈ E(G�

n). This implies
that the directions of the edges of G�

n can be assigned
such that it is a persistent graph, implying that rigidly
feasible formations are persistently feasible. Since a
network is persistent if and only if it is rigid and con-
straint consistent, then P is not persistently feasible if it
is not rigidly feasible. ��

Theorem 2 shows that the modified pebble game
tests for both rigid and persistent feasibility.

4.4 Persistent graph generation

Here, we show that the pebble game algorithm also
generates minimally persistent graphs.

A graph is minimally persistent if and only if it is
minimally rigid and no vertex has an out-degree larger
than two [27]. We denote the out-degree of a vertex
v by deg−(v). Note that the pebble game produces a
directed graph G�

n , where each edge (vi, v j) is covered

328 Mobile Netw Appl (2009) 14:322–335

by one of two pebbles from vertex vi. Thus, we have the
following theorem:

Theorem 3 The pebble game and modified pebble game
algorithms generate minimally persistent graphs.

Proof Assume that G�
n is a rigid graph successfully

generated by the pebble game. In [33], it is shown that
the pebble game generates a minimally rigid graph.
Since each directed edge (vi, v j) ∈ E(G�

n) represents
the edge being covered by a pebble from vertex vi,
this implies that deg−(vi) ≤ 2 ∀vi ∈ V(G�

n). This implies
that G�

n is minimally persistent. This also holds for the
modified pebble game. ��

5 Graph operations

In this section, we describe methods for representing
and choosing leader–follower pairs of a persistent for-
mation. We present graph operations that represent
agent interactions that execute a persistent formation.
We also present an algorithm for generating a sequence
of graph operations, which represents a sequence of
agent interactions to execute a persistent formation.

5.1 Leader–follower pairs

We define a leader–follower pair [16] as a pair of
adjacent vertices (vl, v f) ∈ V(G�

n) × V(G�
n) such that

deg−(vl) = 0, deg−(v f) = 1, and ∃(v f , vl) ∈ E(G�
n). We

say that vertex vl is the leader vertex, and vertex v f is
the follower vertex.

The leader agent has no constraints, and thus has
two degrees of freedom, implying that the persistent
formation will follow the leader agent in R2. Similarly,
the follower agent has one constraint, and thus one
degree of freedom, implying that the persistent forma-
tion will rotate around the leader agent as the follower
agent performs circular motion around the leader. For
a persistent graph, edge-reversing operations can make
any pair of adjacent agents a leader–follower pair with
the graph remaining persistent [28]. A leader–follower
pair is demonstrated in Fig. 3c and d.

5.2 Persistent graph operations

In an actual multi-agent network, achieving a persis-
tent formation requires agents with no constraints to
interact and establish constraints. Such a sequence of
agent interactions, if successful, results in a persistent
formation, with inter-agent distances corresponding to
the target formation.

Graph operations can be used to represent such a se-
quence of agent interactions. In [28], graph operations
are presented for assembling and modifying persistent
graphs. These operations consist of directed vertex ad-
dition and edge-splitting operations. Consider a graph
G such that {vi, v j, vp} ⊂ V(G), (vp, v j) ∈ E(G), and
vk /∈ V(G). A vertex addition consists of adding vk to
V(G) and adding edges (vk, vi), (vk, v j) to E(G). Figure
4a and b show a vertex addition operation. An edge-
splitting operation consists of adding vk to V(G) and
adding edges (vk, vi), (vk, v j) to E(G), while also remov-
ing edge (vp, v j) from E(G). Figure 4c and d show an
edge-splitting operation. Graph operation sequences
for assembling minimally persistent graphs are typically
generated by performing inverse graph operations on
the graph to be assembled, along with edge reversing
operations.

In [28], it is shown that any persistent graph can be
deconstructed by a combination of these inverse oper-
ations, and then reconstructed by a reverse sequence of

k

i

j

k

i

j

(a) (b)

k

i

j

p

k

i

j

p

(c) (d)

υ

υ

υυ

υ

υ

υ υ

υ

υ

υ

υυ

υ

Fig. 4 Persistent graph operations. a and b show the results of a
vertex addition operation. c and d show the results of an edge-
splitting operation. In this figure, the shaded area represents a
minimally persistent graph before the operation. The resulting
graph is always minimally persistent, as well

Mobile Netw Appl (2009) 14:322–335 329

Fig. 5 An example network
where performing an inverse
edge-splitting operation
introduces a new edge whose
length is greater than all
pre-existing edges. This new
edge could violate the
proximity range of the
network

x1

x2 x3 x4 x5

x6 x7

non-inverse operations. Additionally, [28] guarantees
that each intermediate graph is persistent. However,
these methods are completely graph based, and do
not take into account a proximity range for a multi-
agent network. Consider Fig. 5. This network has a
minimally persistent graph. An inverse vertex addition
cannot be performed. Also, note that any inverse edge-
splitting operation will introduce a new edge into the
network which has a length longer than any other edge.
This new edge could violate the proximity range of the
mobile agent network. Therefore, given a formation and
a proximity range limit on the edge lengths of a network,
certain network graphs cannot be deconstructed by these
traditional operations without introducing a constraint
that violates the proximity range.

5.3 Persistent-� operations

In this section we present two new graph operations to
construct persistent graphs. These, combined with tra-
ditional vertex addition, allow any persistent graph with
a leader–follower pair to be constructed without using
any edges that are not contained in the final graph.
We call this set of three graph operations persistent-�
operations.

Each operation is represented by a double op =
(V, E), where V(op) = V is a set of vertices to add to
the graph, and E(op) = E is a set of edges to add to the
graph.

A vertex addition is a persistent-� operation defined
as in Section 5.2. A vertex addition is represented as
vertexAddition(vi, v j, vk) = ({vk}, {(vk, vi), (vk, v j)}).

Consider a directed graph G such that vi ∈ V(G),
v j /∈ V(G). Single-vertex addition consists of adding
a vertex v j to V(G) and adding edge (v j, vi) to
E(G). A single-vertex addition is represented as
singleVertex(vi, v j) = ({v j}, {(v j, vi)}). Note that this op-
eration does not preserve persistence. In fact, it guaran-
tees a loss of persistence, since this new vertex has one
degree of freedom.

Consider a directed graph G such that (vi, v j) ∈
V(G) × V(G) and (v j, vi) /∈ E(G). Edge insertion con-
sists of adding edge (v j, vi) to E(G). An edge insertion

is represented as edgeInsertion(vi, v j) = (∅, {(v j, vi)}).
Figure 6 shows these operations.

5.4 Persistent-� sequence generation

This section describes how persistent-� operations can
be used to construct any persistent graph with a leader–
follower pair.

k

i

j

k

i

j

(a) (b)

j i j i

(c) (d)

i

j

i

j

(e) (f)

υ

υ

υ

υ

υ

υ

υ υυυ

υ

υ

υ

υ

Fig. 6 Persistent-� graph operations. a, b a vertex addition.
c, d a single-vertex addition. e, f an edge insertion operation. As
before, the shaded area represents a minimally persistent graph
before the operation

330 Mobile Netw Appl (2009) 14:322–335

If G�
n is a minimally persistent graph where

∃(vi, v j) ∈ V(G�
n) × V(G�

n) such that deg−(vi) ≥ 1 and
vertex deg−(v j) ≤ 1, then there is a directed path from
vi to v j [28]. Also, if (vl, v f) ∈ V(G�

n) × V(G�
n) are a

leader–follower pair, respectively, then, for all vertices

Algorithm 2 Persistent� Generation(Gn)

Require: Graph G�
n exists such that G�

n is minimally
persistent with leader–follower pair (vl, v f).
Initialize leader–follower seed G := G2 such that
V(G) := V(G2) = {vl, v f } and E(G) := E(G2) =
{(v f , vl)};
Initialize sequence of graph operations S := ∅;
while |V(G)| < |V(G�

n)| or |E(G)| < |E(G�
n)| do

Initialize sequence of graph operations s := ∅;
for all (vi, v j) ∈ V(G) × V(G) do

{Generate all possible edge insertions}
if (v j, vi) ∈ E(G�

n) and (v j, vi) /∈ E(G) then
ei := edgeInsertion(vi, v j);
s := s · ei;

end if
end for
Initialize vertexAdded := false;
for all vk ∈ V(G�

n) such that vk /∈ V(G) do
{Generate all possible vertex additions}
if ∃(vi, v j) ∈ V(G) × V(G) such that
{(vk, vi), (vk, v j)} ∈ E(G�

n) then
va := vertexAddition(vi, v j, vk)

s := s · va;
vertexAdded := true;

end if
end for
if vertexAdded = false then

for all v j ∈ V(G�
n) such that v j /∈ V(G) do

{Generate all possible single-vertex additions}
if ∃vi ∈ V(G) such that (v j, vi) ∈ E(G�

n) then
sva := singleVertex(vi, v j);
s := s · sva;

end if
end for

end if
for all operations op ∈ s do

{Perform all determined graph operations}
V(G) := V(G) ∪ V(op);
E(G) := E(G) ∪ E(op);

end for
S := S · s;

end while
return S;

v ∈ V(G�
n) \ {vl, v f }, deg−(v) = 2 [27]. This leads to the

following lemma:

Lemma 1 Let G�
n be a minimally persistent graph such

that vertex vl is the leader vertex and vertex v f is the
follower vertex of a leader–follower pair. This implies
the existence of a directed path from all vertices v ∈
V(G�

n) \ vl to vl .

Proof Assume that G�
n exists as in Lemma 1. Since vl

and v f are a leader–follower pair, this implies a directed
path from v f to vl and that deg−(vl) < deg−(v f) ≤
1. This implies that all vertices v ∈ V(G�

n) \ {vl, v f },
deg−(v) = 2. Then there is a directed path from v to
v f and vl. This implies that there exists path from all
vertices in V(G�

n) \ vl to vl. ��

This leads us to an algorithm for constructing a
sequence of graph operations to construct a minimally
persistent graph. We define a leader–follower seed as
a graph G2 such that V(G2) = {vl, v f } and E(G2) =
{(v f , vl)}. Here, vertex vl is the leader vertex, and vertex
v f is the follower vertex.

Any minimally persistent graph can be constructed
from a leader–follower seed by a sequence of

x1

x2 x3 x4 x5

x6 x7

x1

x2 x3 x4 x5

x6 x7

(a) (b)

x1

x2 x3 x4 x5

x6 x7

x1

x2 x3 x4 x5

x6 x7

(c) (d)

Fig. 7 A sequence of Persistent-� operations constructing a
framework. a The initial leader–follower seed. b Two vertex
additions are performed. c No more vertex additions are possi-
ble. Three single-vertex additions are performed. d Three edge
insertions are performed, one for each single-vertex addition

Mobile Netw Appl (2009) 14:322–335 331

Fig. 8 The Graphical User
Interface (GUI) for
specifying formations. By
defining the formation P and
the proximity range �, the
software uses our methods to
determine if the formation is
persistently feasible. If so, it
automatically generates a
sequence of persistent-�
graph operations for
assembling such a formation,
as well as analogous rules for
an Embedded Graph
Grammar (EGG) system to
assemble the formation. The
EGG rules are used by the
network to assemble
formations with the
multi-robot network in Fig. 10

persistent-� graph operations. First, given a minimally
persistent graph G�

n , a graph G is initialized to the
leader–follower seed G2 using the leader and follower
vertices in G�

n . Until all vertices and edges of G�
n are

present in G, the following process is performed:

1. Generate each possible edge insertion.
2. Generate each possible vertex addition.
3. If no vertex additions were performed, generate

each possible single-vertex addition.

The condition for single-vertex addition is due to
the fact that single-vertex addition does not preserve
persistence. Directed vertex addition does. Therefore,
these are preferred. Edge insertions are necessary to
complete the graph after single-vertex additions are
performed. After this process, each of the generated
graph operations is executed on the graph G. This
process is repeated until all vertices and edges have
been added to the graph. Algorithm 2 describes this
process. In Algorithm 2, we represent concatenating
element s to the end of sequence S by S · s.

Figure 7 shows a resulting sequence of this algorithm.
We have the following theorem for the effectiveness of
this method:

Theorem 4 For a minimally persistent graph G�
n with

a leader–follower pair, the persistent-� generation algo-
rithm will generate a sequence of graph operations that
construct G�

n from a leader–follower seed.

Proof Assume that G�
n exists, with (vl, v f) as the leader

and follower of a leader–follower pair, and that G is the
initialized leader–follower seed. If the graph has only
two vertices, the graph is constructed.

If there are more than two vertices, then, by Lemma
1, there exists a path from all vertices in V(G�

n) \
{vl} to vertex vl. This implies that there exists a pair
of vertices (vi, v j) such that v j ∈ V(G�

n), v j /∈ V(G),
vi ∈ V(G), (v j, vi) ∈ E(G�

n). This implies that a single-
vertex addition is possible (there may also be vertex ad-
ditions possible, but this is unnecessary for the proof).

Assume that a single-vertex operation is performed,
increasing the size of V(G) and E(G). Note that G
always has the leader–follower pair. Therefore, if there
are remaining vertices v ∈ V(G�

n) such that v /∈ V(G),
then Lemma 1 also shows that more single-vertex addi-
tions are possible. In fact, more single-vertex additions
will always be possible until there does not exist a v ∈
V(G�

n) such that v /∈ V(G). Since we have not added
any vertices v /∈ V(G�

n) to V(G), this implies that, at
this point, V(G�

n) = V(G).

i

j

k

i

j

Fig. 9 A vertex addition rule. Here, robots whose labels corre-
spond to vi and v j imply that these robots have been assigned
to positions i and j in the formation. Each vertex addition graph
operation (as depicted in Fig. 6) defines a vertex addition rule
as shown in this figure. These rules allow the formation to be
assembled

332 Mobile Netw Appl (2009) 14:322–335

Fig. 10 EGG execution of
the graph operations on the
multi-robot network.
a shows each robot labeled as
w. b shows the results of the
leader–follower seed graph
being generated. Now a
follower (robot 2) begins to
satisfy the constraint
indicated by the edge to the
leader (robot 1, shown in c.
Once the follower has
finalized its position, two
vertex additions are executed,
shown in d. Robots labeled 3
and 4 begin to satisfy their
constraints with the robots
labeled 1 and 2, as shown in
e. Similarly, f and g show two
more concurrent vertex
additions. h shows the
completed formation

(a)

1

2

(b)

1

2

(c)

1

2

3
4

(d)

1

23

4

(e)

1

23

45 6

(f)

1

23

45

6

(g)

1

23

4

5

6

(h)

For all edges (v j, vi) ∈ E(G�
n), either (v j, vi) =

(v f , vl),the leader–follower edge, or (v j, vi) is not the
leader–follower edge. If (v j, vi) is the leader–follower

edge, then it was added to E(G) when the leader–
follower seed was initialized. If it is not the leader–
follower edge, note that we have already proven that all

Mobile Netw Appl (2009) 14:322–335 333

vertices V(G�
n) are added to V(G) such that V(G�

n) =
V(G). This implies that, for any remaining edges not
added by vertex or single-vertex additions, there exists
a pair of vertices (vi, v j) ∈ V(G) such that (v j, vi) ∈
E(G�

n) and (v j, vi) /∈ E(G). These edges are added by
edge insertions.

Since the algorithm uses these conditions to search
for single-vertex additions and edge-insertions, all such
operations are performed, guaranteeing that V(G�

n) =
V(G) and E(G�

n) = E(G). ��

6 Implementation scenario and results

Here, we demonstrate the assembly of formations on a
multi-robot network using graph operations.

In [34], we consider automatic methods for imple-
menting a subset of minimally persistent formations
with leader–follower pairs. Specifically, we consider
minimally persistent formations that correspond to sta-
bly rigid graphs [35, 36]. Since stably rigid graphs are
acyclic, the implementation of these formations with
control laws is simplified. As a consequence, these
graphs can be assembled from a leader–follower seed
by sequences of vertex additions only.

We implement the following scenario: We have a
network of six robots with data collection sensors, and
we wish to distribute them in a 5 m triangular coverage
pattern over an area of interest. Triangular coverage
patterns occur frequently, since they dictate an equal
distance (in this case, of 5 m) between each adjacent
robot in the coverage pattern. Therefore, we enter
a triangulation pattern of positions in our graphical
program discussed in Section 2 and shown in Fig. 8.

The points entered in the GUI define our target for-
mation P. The modified pebble game is used to define
the minimally persistent graph G�

n shown in Fig. 8, as
well as a leader–follower seed G2 (here, with vertices
1 and 2), and a sequence of vertex addition operations
that define a Henneberg sequence S.

To implement these graph operations with the net-
work, we us an Embedded Graph Grammar (EGG)
system [34]. In this system, a rule is defined for each
graph operation, as well as the assembly of the leader–
follower seed graph. The EGG system deals with
labeled graphs where each label corresponds to the
position in the formation assigned to each robot. Each
rule has a left graph L and a right graph R, and this
pair in rule r is denoted as (L ⇀ R) ∈ r. We define
Gn as the network graph corresponding to the actual
robot network. When an induced subgraph of Gn is a
label-preserving isomorphism of L, it can be replaced
by R. Thus, we can define rules that correspond to

vertex additions for implementing formation assembly.
Figure 9 shows how each vertex addition graph oper-
ation (Fig. 6) define vertex addition rules in the EGG
system.

Initially, each robot begins with a label of w, indi-
cating that the robot is not assigned a position. First,
the leader–follower rule assigns the leader and follower
position to two robots. After this, vertex addition rules
(corresponding to vertex addition operations) assign
other positions to other robots. As such, the topology
of Gn changes as the system evolves. Finally, each
robot is assigned a position, and the labeling of Gn is
an isomorphism from Gn to G�

n , the desired network
graph for our target formation P. The EGG system also
describes the mode of each robot, corresponding to the
vertex it is assigned in G�

n . The topology of G�
n and

the geometry defined by the target formation P define
the control laws for each robot according to the position
it is assigned in the formation. This combination of
assembly rules and control laws result in the geometry
of the assembled formation corresponding to the target
formation P, with a topology corresponding to G�

n (For
a more detailed explanation of the definition of this
EGG system, see [34]).

Figure 10 shows the execution results of the scenario.
In this figure, each robot is labeled with either w,
indicating that it is a wanderer, or with the number
corresponding to its vertex in Fig. 8. In Fig. 10a, we see
the initial setup, where each robot is a wanderer. First,
a leader–follower pair is formed such that one of the
robots is now a leader (labeled 1), and the other is a
follower (labeled 2), and the follower begins moving to
reach a distance of 5 m from the leader, as shown in
Fig. 10b and c.

As shown in Fig. 10d and e, two vertex addition
position operations are applied simultaneously (robots
labeled 3 and 4). Similarly, Fig. 10f and g show two
concurrent vertex addition operations being applied
(robots labeled 5 and 6). Finally, the formation is suc-
cessfully completed, as shown in Fig. 10h.

7 Conclusions

In this paper, we presented a method for determining
if given target formations for multi-agent networks are
rigidly feasible and persistently feasible in the sense
that they can be realized by a team of mobile agents
with limited sensing and communication range. We
introduced an algorithm for generating minimally per-
sistent graphs under such proximity constraints. We
also presented new graph operations to construct a per-
sistent graph that represents a formation under range

334 Mobile Netw Appl (2009) 14:322–335

constraints, as well as a method for automatically gen-
erating a sequence of these operations for any forma-
tion in question. These graphs and operations describe
the control and coordination strategies necessary to
allow the desired formation to emerge in a multi-agent
network. Experimental results were given that show
that the developed methods can be implemented on a
real robot network.

Acknowledgements This work was partially supported under
a contract with the National Aeronautics and Space Adminis-
tration. We also thank Julien Hendrickx for helpful discussions
about graph rigidity and persistence.

References

1. Balch T, Arkin RC (1998) Behavior-based formation con-
trol for multirobot teams. IEEE Trans Robot Automat
14(6):926–939, Dec

2. Cortés J, Martínez S, Bullo F (2006) Robust rendezvous for
mobile autonomous agents via proximity graphs in arbitrary
dimensions. IEEE Trans Robot Automat 51(8):1289–1298,
Aug

3. Desai J, Ostrowski J, Kumar V (2001) Modeling and control
of formations of nonholonomic mobile robots. IEEE Trans
Robot Automat 17(6):905–908, Dec

4. Do KD, Pan J (2007) Nonlinear formation control of
unicycle-type mobile robots. Robot Auton Syst 55(3):191–
204, March

5. Egerstedt M, Hu X (2001) Formation constrained multi-
agent control. IEEE Trans Robot Automat 17(6):947–951,
Dec

6. Kalantar S, Zimmer UR (2007) Distributed shape control of
homogeneous swarms of autonomous underwater vehicles.
Auton Robots 22(1):37–53, January

7. Kaminka GA, Glick R (2006) Towards robust multi-robot
formations. In: Conference on international robotics and au-
tomation, Orlando, 15–19 May 2006, pp 582–588

8. Lawton J, Beard R, Young B (2003) A decentralized ap-
proach to formation maneuvers. IEEE Trans Robot Automat
19(6):933–941, Dec

9. Leonard NE, Fiorelli E (2001) Virtual leaders, artificial po-
tentials and coordinated control of groups. In: Proceedings of
the IEEE conference on decision and control 2001, Orlando,
December 2001, pp 2968–2973

10. Lin J, Morse A, Anderson B (2003) The multi-agent ren-
dezvous problem. In: Proceedings of the 42nd IEEE con-
ference on decision and control, Maui, December 2003,
pp 1508–1513

11. Sugihara K, Suzuki I (1990) Distributed motion coordination
of multiple robots. In: Proceedings of IEEE int. symp. on in-
telligent control, Philadelphia, 5–7 September 1990, pp 138–
143

12. Vig L, Adams JA (2006) Multi-robot coalition formation.
IEEE Trans Robot 22(4):637–649, August

13. Yuan L, Weidong C, Yugeng X (2006) Energy-efficient
aggregation control for mobile sensor networks. In: Interna-
tional conference on intelligent computing, vol 344. Intelli-
gent control and automation, Kunming, August 2006, pp 188–
193

14. Zhijun T, Ozguner U (2006) On non-escape search for a
moving target by multiple mobile sensor agents. In: American
control conference, American automatic control council,
IEEE, Minneapolis, June 2006, p 6

15. Ando H, Oasa Y, Suzuki I, Yamashita M (1999) Distributed
memoryless point convergence algorithm for mobile robots
with limited visibility. IEEE Trans Robot Automat 15:818–
828, Oct

16. Eren T, Whiteley W, Anderson BDO, Morse AS, Belhumeur
PN (2005) Information structures to secure control of rigid
formations with leader–follower architecture. In: Proceedings
of the American control conference, Portland, June 2005,
pp 2966–2971

17. Fax JA, Murray RM (2002) Graph laplacian and stabilization
of vehicle formations. In: Proceedings of the 15th IFAC conf,
Barcelona, 21–26 July 2002, pp 283–288

18. Fax J, Murray R (2004) Information flow and cooperative
control of vehicle formations. IEEE Trans Automat Contr
49:1465–1476, Sept

19. Jadbabaie JLA, Morse AS (2003) Coordination of groups
of mobile autonomous agents using nearest neighbor rules.
IEEE Trans Automat Contr 48(6):988–1001, June

20. Ji M, Egerstedt M (2007) Distributed coordination control of
multi-agent systems while preserving connectedness. IEEE
Trans Robot 23:693–703

21. Lin Z, Broucke M, Francis B (2004) Local control strategies
for groups of mobile autonomous agents. IEEE Trans Au-
tomat Contr 49(4):622–629

22. Kim Y, Mesbahi M (2006) On maximizing the second smallest
eigenvalue of a state-dependent graph laplacian. IEEE Trans
Automat Contr 51:116–120, Jan

23. Ren W, Beard R (2004) Consensus of information under
dynamically changing interaction topologies. In: Proceedings
of the American control conference 2004, vol 6, Boston, 30
June–2 July 2004, pp 4939–4944

24. Saber RO, Murray RM (2002) Distributed structural sta-
bilization and tracking for formations of dynamic multi-
agents. In: Proceedings of the 41st IEEE conference on
decision and control 2002, vol 1, Las Vegas, December 2002,
pp 209–215

25. Saber RO, Murray RM (2003) Flocking with obstacl avoid-
ance: cooperation with limited communication in mobile
networks. In: Proceedings of the 42nd IEEE conference on
decision and control 2003, vol 2, Maui, December 2003,
pp 2022–2028

26. Saber RO, Murray RM (2003) Agreement problems in
networks with directed graphs and switching toplogy. In:
Proceedings of the 42nd IEEE conference on decision
and control 2003, vol 4, Maui, December 2003, pp 4126–
4132

27. Hendrickx JM, Anderson BDO, Delvenne J-C, Blondel VD
(2000) Directed graphs for the analysis of rigidity and persis-
tence in autonomous agent systems. Int J Robust Nonlinear
Control 17:960–981

28. Hendrickx JM, Fidan B, Yu C, Anderson BDO, Blondel VD
(2006) Elementary operations for the reorganization of min-
imally persistent formations. In: Proceedings of the mathe-
matical theory of networks and systems (MTNS) conference,
no. 17, Kyoto, July 2006, pp 859–873

29. Gluck H (1975) Almost all simply connected closed surfaces
are rigid. In: Geometric topology. Lecture notes in Math,
vol 438. Springer, Berlin, pp 225–239

30. Roth B (1981) Rigid and flexible frameworks. Am Math Mon
88(1):6–21

31. Tay T, Whiteley W (1985) Generating isostatic frameworks.
Topol Struct 11:21–69

Mobile Netw Appl (2009) 14:322–335 335

32. Laman G (1970) On graphs and rigidity of plane skeletal
structures. J Eng Math 4(4):331–340, October

33. Jacobs DJ, Hendrickson B (1997) An algorithm for two-
dimensional rigidity percolation: the pebble game. J Comput
Phys 137(2):346–365, June

34. Smith BS, Egerstedt M, Howard A (2008) Automatic deploy-
ment and formation control of decentralized multi-agent net-
works. In: Proceedings of the IEEE international conference
on robotics and automation, Pasadena, 19–23 May 2008

35. Baillieul J, Suri A (2003) Information patterns and hedg-
ing brockett’s theorem in controlling vehicle formations. In:
Proceedings of the 42nd IEEE international conference on
decision and control, Maui, December 2003, pp 556–563

36. Eren T, Whiteley W, Anderson BD, Morse AS, Belhumeur
PN (2005) Information structures to secure control of rigid
formations with leader–follower architecture. In: Proceedings
of the 2005 American control conference, vol 4, Portland,
June 2005, pp 2966–2971

	Automatic Generation of Persistent Formations for Multi-agent Networks Under Range Constraints
	Abstract
	Introduction
	Preliminaries
	Network trajectories
	Proximity range
	Target formations
	Network graph

	Rigid feasibility and rigid graph generation: the modified ``pebble game''
	Rigidity
	Infinitesimal rigidity
	Generic rigidity
	Rigid feasibility

	Persistent feasibility and persistent graph generation
	Persistence
	Rigidity, constraint consistence, and persistence summary
	Persistent feasibility
	Persistent graph generation

	Graph operations
	Leader--follower pairs
	Persistent graph operations
	Persistent- operations
	Persistent- sequence generation

	Implementation scenario and results
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

