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a b s t r a c t

We study bipartite, first-order networks where the nodes take on leader or follower roles. Specifically, we
let the leaders’ positions be static and assume that leaders and followers communicate via an undirected
switching graph topology. This assumption is inspired by the swarming behavior of silkworm moths,
where female moths intermittently release pheromones to be detected by the males. The main result
presented here states that if the followers execute the linear agreement protocol, theywill converge to the
convex hull spanned by the leaders’ positions as long as the time-varying undirected graph defining the
communication among all agents is jointly connected. The novelty of this research is that we use LaSalle’s
Invariance Principle for switched systems, and additionally, the result is shown to hold for arbitrary state
dimensions.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

The research on multi-agent robotics and decentralized, net-
worked control has drawn significant inspiration from interaction
rules in social animals and insects (Couzin & Franks, 2003; Gazi
& Passino, 2004; Grünbaum, Viscido & Parrish, 2004). In particu-
lar, thewidely used nearest-neighbor-based interaction rules, used
for example for formation control (e.g. Ji, Muhammad, and Egerst-
edt (2006) and Olfati-Saber (2006)), consensus (e.g. Jadbabaie, Lin,
and Morse (2003) and Ren and Beard (2004)), and coverage con-
trol (Cortes, Martinez, & Bullo, 2006; McNew, Klavins, & Egerstedt,
2007), have direct biological counterparts, as pointed out in Couzin
and Franks (2003). In this paper, we follow this line of inquiry by
seeing if we can understand how leader–follower systems behave
if: (i) the leaders are only intermittently visible to the followers,
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and (ii) the agents interact over a switching network topology. This
model is inspired by a particular swarming phenomenon observed
in the silkworm moth Bombyx Mori.

Silkworm moths are known to swarm in tight geometrical
configurations, such as vertical cylindrical structures. This is
caused by the females’ intermittent releasing of a pheromone
– bombykol – to attract male moths, and by the males’ mutual
attraction to determine each other’s gender through visual
inspection. These two phenomena in essence make the females
act as attractors to the males, but the intermittent nature of the
release and of the individuals’ interactions produces an inherently
switched system. Moreover, the spatial distribution of the females
imply that the males are attracted to a general area rather than
to a particular point, which is what is believed to cause their
characteristic swarming geometry (see, e.g., Hummel and Miller
(1984), Pasteels and Deneubourg (1987), Thornhill and Alcock
(1983) and Wheeler (1923)).

Based on this discussion, in this paper we investigate a first-
order network model in which stationary leaders (the female
moths) and moving followers (the males) are only intermittently
visible to each other. This corresponds to applying a switched con-
trol input of varying dimension (since the number of communi-
cating agents may be changing) to the system. Our main result is
that, asymptotically, the followers will end up in the convex hull
spanned by all the leaders’ positions. For the case inwhich the lead-
ers are always visible and no edges appear or disappear between
followers, this is already known Ferrari-Trecate, Egerstedt, Buffa,
and Ji (2006). Along a similar line of inquiry, rendezvous in switch-
ing directed networks with at most one leader has been studied
in Moreau (2004).
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The main contribution of this paper is a containment result
for switched networks with intermittently visible, static leaders.
Using tools fromhybrid stability theory, namely a hybrid version of
LaSalle’s Invariance Principle Mancilla-Aguilar and García (2006),
we show that the convex hull of leaders’ and followers’ positions
shrinks to the convex hull of the leaders’ fixed positions, which is
proven to be the largest invariant set for the followers’ positions.
Preliminary results were provided in Haque et al. (2008), where
it was shown (under stronger assumptions) that the followers
end up in a larger ellipsoidal set that contains the convex hull
of the leaders’ positions, and in Notarstefano et al. (2009), where
containment under fixed interaction topologies was studied. A
similar question to the one under consideration here was pursued
in Cao and Ren (2009), where the containment problem was
studied for systems with scalar dynamics; whereas in this paper,
the result is proven for arbitrary state dimensions. Furthermore,
the LaSalle-based approach used here is different from Cao and
Ren (2009), which has the advantage of being directly applicable
to non-scalar systems.

The outline of the paper is as follows: We next establish some
of the basic notation that will be used in the paper. We then,
in Section 2, recall the switched version of LaSalle’s Invariance
Principle, followed by a discussion of the underlying network
model in Section 3 and the static case, in Section 4. Themain result
for switched systems is given in Section 5, followed by a simulation
study in Section 6.
Notation. We let N and R≥0 denote the natural numbers and the
nonnegative real numbers, respectively. Given the sets M , M1 and
M2 such that M ⊂ M1 × M2, we denote by π1(M) (respectively
π2(M)) the projection of M on M1 (respectively M2), i.e. π1(M1 ×

M2) = M1 and π2(M1 × M2) = M2. We denote by 1d, d ∈ N, the
vector of dimension d with all entries equal to 1 (e.g. 12 = [1 1]T ).
Given a vector v ∈ Rd, d ∈ N, and a set M ⊂ Rd, we denote
dist (v,M) the distance between v and M , that is, dist (v,M) =

infw∈M ‖v − w‖2, where ‖ · ‖2 is the two norm.

2. LaSalle’s Invariance Principle for switched systems

In this section, we recall LaSalle’s Invariance Principle for
switched systems proved in Mancilla-Aguilar and García (2006)
that will be useful to prove our main result. For the sake of clarity,
we will not use the most general assumptions used in the paper,
but we will impose stronger assumptions that are verified by our
problem formulation.

Given a parameterized family of locally Lipschitz vector fields
{fγ : Rn

→ Rn
| γ ∈ Γ }, where Γ is a finite index set, we consider

the switched system

ẋ(t) = fσ(t)(x(t)), (1)

where σ : R≥0 → Γ is a piecewise constant (continuous from the
right) switching signal.

Let S be the set of all switching signals. A pair (x(·), σ (·)) is a
trajectory of (1) if and only if σ(·) ∈ S and x : [0, T ) → Rn, 0 <
T ≤ +∞, is a piecewise differential solution to ẋ(t) = fσ(t)(x(t)),
t ∈ [0, T ). Note that T is, in general, a function of x(0) and σ(·) so
that we should write T (x(0), σ (·)).

In the following we will consider switching signals that have
positive average dwell-time, i.e. signals for which the number
of discontinuities in any open interval is bounded above by the
length of the interval normalized by an ‘‘average dwell-time’’ plus
a ‘‘chatter bound’’.

More formally, we say that a switching signal σ(·) has an
average dwell-time τD > 0 and a chatter bound N0 ∈ N if the
number of its switching times in any open interval (τ1, τ2) ⊂ R≥0
is bounded by N0 + (τ2 − τ1)/τD. We denote by Sa[τD,N0] the
set of all switching signals with average dwell-time τD and chatter

bound N0, and by Ta[τD,N0] the subclass of all trajectories of (1)
corresponding to some σ(·) ∈ S a[τD,N0]. Also, we let

Sa = ∪τD>0, N0∈NS a[τD,N0],

and consequently, we let Ta be the corresponding subclass of
trajectories.

In order to deal with LaSalle’s Invariance Principle it is useful,
following Mancilla-Aguilar and García (2006), to introduce the
following subclasses of trajectories.

Definition 2.1 (Class of Trajectories TV ). Let V : Ω ⊂ Rn
→ R be a

continuous function. TV is the class of trajectories (x(·), σ (·)) ∈ T

which verify the conditions:

(i) x(t) ∈ Ω for all t ∈ [0, T );
(ii) for any pair of times t, t ′ ∈ [0, T ) such that t ≤ t ′ and

σ(t) = σ(t ′), then V (x(t), σ (t)) ≥ V (x(t ′), σ (t ′)).

T ∗

V is the subfamily of (x(·), σ (·)) ∈ TV verifying V (x(t), σ (t)) =

V (x(t ′), σ (t ′)) for σ(t) = σ(t ′). �

Then, we introduce a suitable notion of a weakly invariant set.

Definition 2.2 (Weakly Invariant Set). Given a family T ′ of
trajectories of (1), a non-empty subset M ⊂ Rn

× Γ is said to be
weakly invariant with respect to T ′ if, for each (ξ , γ ) ∈ M , there
is a trajectory (x(·), σ (·)) ∈ T ′ such that x(0) = ξ , σ(0) = γ and
(x(t), σ (t)) ∈ M for all t ∈ [0, T ). �

We are now ready to state (a slightly modified version of) LaSalle’s
Invariance Principle proved in Mancilla-Aguilar and García (2006)
(Theorem 2.4).

Theorem 2.1 (LaSalle’s IP for Switched Systems, (Mancilla-Aguilar &
García, 2006)). Let V : Ω × Γ → R, with Ω an open subset of Rn,
be continuous. Suppose that (x(·), σ (·)) is a trajectory belonging to
TV ∩T a[τD,N0] for some τD > 0 and N0 ∈ N, such that for some
compact subset B ⊂ Ω , x(t) ∈ B for all t ≥ 0. Let M ⊂ Rn

× Γ

be the largest weakly invariant set with respect to T ∗

V ∩T a[τD,N0]

contained in Ω × Γ . Then x(t) converges to π1(M) as t → ∞. �

3. Network model

In this section, we introduce a mathematical model, based on
the model in Haque et al. (2008), that describes the swarming
behavior encountered among the silkworm moths. Informally, we
consider a network with agents of two sorts: leaders (representing
the female moths) and followers (representing the males). Leaders
and followers are both described as first-order integrators, but
they apply different control laws. In this paper we assume the
leaders to be stationary, that is, their control input is identically
zero. Also, we assume that they may be active or inactive,
equivalently visible or invisible to the followers. The followers
apply a Laplacian-based averaging control law. They communicate
among themselves andwith active leaders according to a switching
undirected communication graph.

More formally, we consider a network of agents labeled by a set
of identifiers {1, . . . , n}, n ∈ N, such that the labels {1, . . . , nf

},
nf

∈ N, correspond to the followers and the remaining ones to
the leaders. The agents live in state space Rd, d ∈ N, and obey
first order, continuous time dynamics, that is, ẋi = ui, for all i ∈

{1, . . . , n}, where xi ∈ Rd andui ∈ Rd are respectively the state and
the input of agent i. In order to distinguish between follower and
leader dynamics, we will use the notation xfi and xlj for the states
of follower i and leader j, respectively. It is worth noting that the
dynamics are decoupled; thus along each direction the dynamics
is exactly the dynamics of a system with d = 1.
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The agents communicate according to a switching undirected
communication graph. Formally, we let {1, . . . , n} be the set of
nodes of the graph and σ : R≥0 → Γ := {0, 1}2

n
be a switching

signal with positive average dwell-time, that is σ(·) ∈ T a[τD,N0]

for some τD > 0 and N0 ∈ N. The communication graph
Gσ(·) = ({1, . . . , n}, Eσ(·)) is defined as follows. An edge (i, j) ∈

{1, . . . , n} × {1, . . . , n} belongs to Eσ(t) if agents i and j
communicate at time t . For any admissible σ(·), we assume that
the graph Gσ(·) is jointly connected. That is, let tk, k ∈ N, denote the
kth switching time of σ(·) greater than or equal to a given time t0 ∈

R≥0, we assume that, for any t0 ∈ R≥0, ∪k∈N Gσ(tk) is connected.
We let Ni(t) be the set of neighbors of follower i. If the graph is

fixed the set of neighbors does not depend on time, thus we will
denote it by simply Ni.

The dynamics of the followers is given by

ẋfi (t) = −

−
j∈Ni(t)

(xfi (t) − xj(t)), i ∈ {1, . . . , nf
}.

It is useful to highlight the contribution of neighboring leaders and
followers separately. Let N f

i (t) and N l
i (t) respectively be the set of

followers and leaders communicating with follower i at instant t .
Thus, the follower dynamics can be rewritten as

ẋfi (t) = −

−
j∈N f

i (t)

(xfi (t) − xfj (t)) −

−
j∈N l

i (t)

(xfi (t) − xlj(t)),

for i ∈ {1, . . . , nf
}.

The leaders are stationary, that is, their dynamics is simply

ẋli(t) = 0, i ∈ {nf
+ 1, . . . , n}.

Next, we introduce some compact notation to write the dynamics
along each direction in Rd. We recall that the dynamics along
different directions are decoupled and coincide with the dynamics
of the scalar system (d = 1). In order to avoid the introduction
of extra indices, we present such a compact form assuming that
d = 1, that is, xi ∈ R for all i ∈ {1, . . . , n}. It is well known that
for the scalar case the statematrix of the linear system obtained by
stacking all the agents’ states is the graph Laplacian. Recall that, for
the undirected graph Gγ = ({1, . . . , n}, Eγ ) the Laplacian matrix
Lγ := (ℓi,j)n×n is defined as:

ℓi,j :=

deg(i) if i = j
−1 if i ≠ j and (i, j) ∈ Eγ

0 otherwise,

where deg(i) is the degree of node i (i.e., the number nodes sharing
an edge with node i). Although leaders do not apply a ‘‘Laplacian
control law’’ (as followers do), it is useful to consider the dynamics
obtained as if all the agents (both leaders and followers) did.
Indeed, the dynamics would be

ẋ(t) = −Lσ(t)x(t),

where x(t) = [x1(t), . . . , xn(t)]T and Lσ(t) is the Laplacian of the
graph Gσ(t) at instant t .

If we partition the Laplacian with respect to leaders and
followers as

Lσ(t) =


Lfσ(t) lflσ(t)

llfσ(t) Llσ(t)


the followers dynamics turns out to be

ẋf (t) = −Lfσ(t)x
f (t) − lflσ(t)x

l, (2)

where xf (t) = [xf1(t), . . . , x
f
nf (t)]

T is the vector of follower posi-
tions at time t and xl = [xlnf +1

, . . . , xln]
T is the constant vector of

leaders positions. It is worth noting that Lfσ(t) is not the follower’s

Laplacian, but depends on active leaders aswell. However, it can be
written in terms of the Laplacian of the follower’s subgraph, Lf0(t),
as

Lfσ(t) = Lf0(t) + Dl(t)

where Dl(t) is a diagonal matrix whose entries are the degrees of
the followers with respect to the active leaders only.

4. Problem statement and static case

Before stating and proving the main result, i.e. the followers
communicating according to a switching graph end up in the
convex hull spanned by the static and only intermittently visible
leaders, we first need to investigate and recall what happens under
static network topologies.

Next, we prove two lemmas that are useful to prove the
convergence result for fixed topology (see for example Ji et al.
(2006) for other versions of the proofs). The results of the next
two lemmas deal with the dynamics along each direction. As in the
previous section, rather than overloading the notation with extra
indices, we just state the result for d = 1.

Lemma 4.1. If the graph is connected, then Lf is positive definite. �

Proof. Weknow that L is positive semi-definite, L ≽ 0. In addition,
if the graph is connected, we have that null (L) = span{1n}. Since

xf
T
Lf xf = [xf

T
0]L

[
xf

0

]
and [xf T 0]T ∉ null(L), we have that

[xf
T
0]L

[
xf

0

]
> 0 ∀ xf ≠ 0. �

This lemma allows us to state the following lemma (also
available in Ji et al. (2006)).

Lemma 4.2. Given fixed leader positions xl, then

xf eq = −Lf
−1

Lflxl (3)

is a globally asymptotically stable equilibrium point.

Proof. The proof follows directly by the fact that Lf is
invertible. �

We are now ready to recall the result from Ferrari-Trecate
et al. (2006) (formulated in a slightly different way) stating that
for a leader–follower network with fixed topology, the followers’
positions will converge to the convex hull of the leaders’ positions.
We provide a different and simpler proof. We stress the fact that
the result holds (and is proven) for arbitrary dimension d ∈ N.

Lemma 4.3 (Containment for a Static Topology). Given a connected,
static network topology with multiple static leaders, the followers will
asymptotically end up in the convex hull, ΩL, spanned by the leaders’
positions, i.e.

xfi,eq ∈ ΩL, i = 1, . . . , nf .

Proof. As a result of Lemma 4.2, we have that if the leaders
are stationary (located at xli, i ∈ {1, . . . , n}), the followers will
asymptotically approach the equilibrium point xf eq whose compo-
nent along each direction can be computed by using the scalar ex-
pression in (3).

Now, since xf eq is an equilibrium, we must have that

ẋfi, eq = 0 = −

−
j∈Ni

(xfi,eq − xj, eq)
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for all follower agents. (Here we have used the notation that if
agent j is a leader, xj, eq is the static position of that leader.) This
means that

xf i, eq =
1

|Ni|

−
j∈Ni

xj, eq.

In other words, the equilibrium point xfi,eq for follower agent i lies
in the convex hull spanned by agent i’s neighbors—may they be
leaders or followers.

Now, if every follower ends up in the convex hull spanned by
its neighbors’ positions, and the only agents who do not need to
satisfy this condition are the leaders, every follower will end up in
the convex hull spanned by the leaders’ positions. �

Remark 4.1. Two straightforward results follow from the previous
lemma and are well known results in the consensus literature;
see, e.g., Moreau (2004). First, the convex hull of the followers’
positions is a decreasing function of time. Second, if there are no
leaders, then the agents rendezvous at a common point. �

It should be pointed out again that the main result presented in
this section is previously known. For the remainder of the paper,
we extend Lemma 4.3 to hold also for a switching topology, which
thus constitutes the main contribution in the paper.

5. Containment under switching topology

In this section, we prove the main result of the paper, i.e. in
a leader–follower network with switching topology the followers
asymptotically converge to the convex hull spanned by the all
stationary leaders’ positions.

Lemma 5.1 (Boundedness of Followers’ Trajectories). Consider a
leader–follower first-order network as in Section 3 (with stationary
leaders and followers’ dynamics as in (2)). Suppose that for any
σ(·) ∈ S a[τD,N0], τD > 0 and N0 ∈ N, the communication graph
Gσ(·) is jointly connected. Then, for any xf (0) ∈ Rdnf , there exists a
compact set B ⊂ Rdnf such that xf (t) ∈ B for all t ≥ 0.

Proof. Regardless of the connectivity, each follower executes

ẋfi (t) = −

−
j∈Ni(t)

(xfi (t) − xj(t)), i ∈ {1, . . . , nf
},

whichmeans that at each time t , xfi moves towards the convex hull
of the agents in its neighborhood set Ni(t), which was shown, for
example, in Ferrari-Trecate et al. (2006). We call this the convex-
hull-seeking property.

Now, let Ω(t) be the convex hull spanned by all the leaders’
(active as well as inactive at time t) and followers’ positions. We
will show that the volume of Ω(t) is uniformly non-increasing
and thus that Ω(0) will serve as the compact set B in which the
followers are uniformly confined. In fact, the only way an agent
can increase the volume ofΩ(t) is by being placed on the boundary
of the convex hull, ∂Ω(t), and moving away from Ω(t), which is
contradicted by the convex-hull-seeking property. As such, |Ω(t)|
never increases, and B = Ω(0) above, which concludes the
proof. �

We are now ready to state the main result.

Theorem 5.1 (Containment for Switching Topology). Consider a
leader–follower first-order network as in Section 3 (with stationary
leaders and follower dynamics as in (2)). Suppose that for any
σ(·) ∈ S a[τD,N0], τD > 0 and N0 ∈ N, the communication graph
Gσ(·) is jointly connected. Let ΩL be the convex hull spanned by all the
leaders’ positions. Then, each follower asymptotically converges toΩL.

In other words, for any ϵ > 0, there exists t̄ > 0 such that, for any
j ∈ {1, . . . , nf

},

dist (xfj (t), ΩL) < ϵ

for all t ≥ t̄ .

Proof. We prove the result by using the LaSalle’s invariant
principle stated in Theorem 2.1. First of all, observe that from
Lemma 5.1 there exists a compact set B ⊂ Rdnf such that for
any (xf (·), σ (·)) ∈ T a[τD,N0], x(t) ∈ B for all t ≥ 0. Next, let
V (xf , γ ) be the volume of the convex hull of the agents (leaders
and followers) for any value of γ . Notice that, since the leaders
are stationary, the volume is only a function of the followers
positions, while the leaders’ positions can be considered as fixed
parameters. First, we show that V is non-increasing between two
switching intervals for all followers’ trajectories, i.e., we show that
TV = T a[τD,N0]. Second, we prove that the set M = (ΩL)

nf
× Γ

is the largest weakly invariant set for the family of trajectories
T ∗

V , i.e., the subfamily of trajectories in TV for which V is constant
between two switching intervals.

To prove that V is non-increasing between two switching
intervals, consider the agents (them being leaders or followers)
inside the convex hull and the ones on it. Now, between two
switching intervals each agent is connected to other agents
(possibly none) via a connected component of the graph Gσ(tk).
By the results proven in the previous section, we know that each
follower has two possibilities to evolve. It will either evolve so
as to shrink the convex hull of the agents in the same connected
components of Gσ(tk) or remain stationary if it is not connected to
anyone. Also, we know that leaders are stationary. Therefore, if an
agent (leader or follower) is inside the convex hull it will remain
inside or become part of the boundary because the convex hull
is shrinking. If it is outside it will either remain stationary (it is a
leader or a disconnected follower) or it will contribute to shrink
the convex hull. Therefore the volume of the convex hull cannot
increase.

Now, we need to prove that M is the largest weakly invariant
set for T ∗

V . Clearly, M is weakly invariant for T ∗

V . Indeed, take any
(ξ , γ ) ∈ M , with ξi = xfi (0) ∈ ΩL for all i ∈ {1, . . . , nf

} and Gγ

the initial (possibly disconnected) communication graph. Using the
results for the static case, it follows easily that for σ(·) ≡ γ each
follower trajectory remains in ΩL so that (x(t), σ (t)) ∈ M for all
t ≥ 0 with (x(·), σ (·)) ∈ T ∗

V . To prove thatM is the largest weakly
invariant set, let, by contradiction, M ′

⊃ M be a larger weakly
invariant set. SinceM ′ is weakly invariant with respect to T ∗

V , then
for any (xf (0), γ ) ∈ M ′ there exists a trajectory (xf (·), σ (·)) such
that the volume of π1(M ′) stays constant and xf (t) ∈ π1(M ′) for
all t ≥ 0. Now, sinceM ′

⊃ M there exists i ∈ {1, . . . , nf
} such that

xfi (0) ∉ ΩL and xfi (0) on the boundary ofπ1(M ′). The contradiction
follows by the joint connectivity of Gσ(·). Indeed, the only way for
the volume of π1(M ′) to remain constant is that xfi (t) = xfi (0) for
all t . But, from the previous arguments we know that for this to
happen agent imust be isolated (not connected to any other agent)
for all t . This gives the contradiction and concludes the proof. �

Remark 5.1 (Extensions of the Main Result). The convex hull of any
subgroup of the leaders’ positions is a subset of the entire convex
hull. Thus, our result remains true under the milder assumption
that each follower is connected to a leader. Also, if starting from a
given time instant a subgroup of the leaders remains disconnected
from the followers, then the followers will converge to the convex
hull of the remaining leaders’ positions. �

Remark 5.2 (Average Dwell-Time Assumption). The assumption
that the communication graph switches according to a signal
with bounded average dwell-time is introduced for the sake of
analytical treatment. How to provide bounds on dwell-time and
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(a) Three leaders are visible to the followers. (b) One leader is visible to the followers.

(c) One leader is visible to the followers. (d) One leader is visible to the followers.

(e) Four leaders are visible to the followers. (f) Two leaders are visible to the followers.

Fig. 1. Simulation of the followers agents (dots) converging to the convex hull spanned by the static leaders agents (squares). The convex hull is shown by the line segments
connecting the leader agents, while lines between follower agents denote edges. Also, a leader agent visible to the follower agents in the network is depicted as a filled-in box..

chatter bound in real practice on the basis of biological data is an
interesting issue. Notice, however, that, to prove our main result
we do not need to know these bounds. �

6. Simulations

We simulate the leader–follower network using 50 follower
agents (dots) and 4 leader agents (squares), as shown in Fig. 1.
Leaders from this network that influence all the followers are
selected at random. The simulation illustrates the fact that the
followers in the network converge to locations inside the convex
hull spanned by the static leader agents.

7. Conclusions

In this paper we studied leader–follower first-order networks.
We showed that the subset of follower agents converge to the
convex hull spanned by the positions of the stationary leader

agents. This is the case even if leaders and followers communicate
only intermittently. The main result in this paper relies on recent
advances in the switched LaSalle’s Invariance Principle, and it can
help explain the swarming behaviors observed in the silkworm
moth,where themalemoths are attracted to the femalemoths that
only intermittently release pheromones. Future directions of this
work include the analysis of the convergence rate of the followers
to the convex hull and more complex models for the system
dynamics that allow us to capture other interesting phenomena
observed in the silkworm moth.
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