
Role Assignment in Multi-Agent Coordination ∗

Meng Ji† Shun-ichi Azuma‡ and Magnus Egerstedt†

Abstract—In this paper we study the problem of
parameterized assignment. This problem arises when
a team of mobile robots must decide what role to take
on in a given planar formation, where the parameters
are the rotation and translation of the formation. A
suite of suboptimal, but computationally tractable
(polynomial time) algorithms are given, based on a
solution to the problem of finding the optimal transla-
tion and rotation given a fixed assignment. Numerical
examples show the viability of the proposed, subopti-
mal solutions.

Index Terms—Coordination; Multi-agent control;

Assignment problem

I. Introduction

A standard issue in multi-agent coordination is the
problem of formation control, where a “formation” is
understood to be a rotationally and translationally in-
variant configuration. In particular, once a desired trans-
lation and rotation has been established, the dispatch
problem concerns the issue of sending a collection of
agents from their initial positions to the target positions,
e.g. while avoiding collisions or preserving energy. In this
paper, we consider the pre-dispatch problem, namely the
problem of determining the following three arguments:

1) Rotation: How should the target formation be ro-
tated?

2) Translation: How should the target formation be
translated?

3) Assignment: What roles in the target formation
should the individual agents be assigned to?

In other words, given a collection of N planar agents,
whose positions are xi ∈ R2, i = 1, . . . , N , and a
representation of the target formation through yi ∈
R2, i = 1, . . . , N , what we are interested in is determin-
ing the rotation angle θ and translation v ∈ R2 of the
target formation. Moreover, we also need to answer the
question of “Who goes where?”, i.e. find an appropriate
permutation p : {1, . . . , N} → {1, . . . , N} that assigns
target position yp(i) to agent i, located at xi.

In this paper, we will show how the simultaneous rota-
tion, translation, and assignment optimization problem
can be cast as a parameterized assignment problem. And,
it should be noted already at this point that the solution

* This work was supported by the U.S. Army Research Office
through the grant # 99838.
† School of Electrical and Computer Engineering,

Georgia Institute of Technology, Atlanta, GA 30032, USA.
mengji,magnus@ece.gatech.edu.
‡ Graduate School of Informatics, Kyoto University , Uji, Kyoto

611-0011, Japan sazuma@i.kyoto-u.ac.jp.

to this problem will result in a centralized algorithm
in the sense that the computation of our solutions will
require complete information about all agents in the
team. As such, the algorithms can not be used in decen-
tralized decision making scenarios. Instead, they should
be thought of as “locker-room agreements” in the sense
that before the team is actually deployed, the solution
will have to have been obtained in a centralized manner.

One would like to be able to implement the pro-
posed algorithms for teams of arbitrary size (possibly
very large). As such, we need to know if the solutions
scale polynomially in the problem size. In this paper,
only heuristic but computational tractable, suboptimal
approaches will be proposed and the computational com-
plexity issue will be left to the future.

The outline of this paper is as follows: Section II
presents the background to the problem while, in Section
III, we define the problem and present a theorem which is
essential to the numerical solutions proposed in Section
IV. In the next section numerical examples are shown
and the results of the different methods are compared.
The last section contains a discussion of further issues,
such as computational complexity and decentralization
issues.

II. Background

During the last five years, several problems have at-
tracted a lot of attention in the field of multi-agent, dis-
tributed control, such as rendezvous problems, agreement
problems, formation control problems and so forth.

The rendezvous problem i.e. the problem of driving all
agents to a single point, has for instance been addressed
in [12], [17], [18]. A variety of algorithms have been
proposed such that a group of agents can reach some
agreement, such as direction, position, etc., with only
local information. The local information limitation is an
embodiment of the limited range of sensors or communi-
cation channels available to the individual agents.

Another problem in multi-agent robot control that
has received considerable attention is that of formation
control [1], [2], [3], [4], [5], [7], [8], [9], [11], [13]. Here
the task is to drive a given formation error to zero.
This formation error has to be defined in such a way
that it reflects how well the formation is being achieved.
Examples include deviations from desired positions [13],
deviations from desired inter-robot distances [11], or as
dissimilarities between graphs encoding the desired and
actual formations [12].

As mentioned before, formation control is one of the
central themes in the multi-agent literature. The com-



plete formation procedure can be roughly divided into
three phases as will be the case in the paper:

1) Gathering (Rendezvous)
The goal of the first phase is to build a complete
graph. Given an arbitrary initial configuration of
the multi-agent group, apply a rendezvous algo-
rithm to drive the agents sufficiently close to one
another in order to facilitate locker-room agree-
ment.

2) Role Assignment
In the second phase, a position must be selected
in the for each agent in such a way that the
displacement of the whole group is minimized.

3) Dispatching
After an assignment is chosen, the group adopts
a formation control scheme to reach the target
formation. ( E.g. [16], [6].)

The main focus in this paper is on the second phase, i.e.
the agent-target matching problem, or reconfiguration
problem. The problem has in fact been studied in both
2D [2] and 3D [3] cases. However the novelty with this
paper lies in a formulation and analysis of the combina-
tion of rotation and translation. In the following section,
we lay out the mathematical foundation of the problem
and present a theorem that will serve as a basis for the
subsequent suboptimal solution.

III. Problem Formulation

The problem considered in this paper is to simulta-
neously optimize (i) the translation and rotation of the
target formation, and (ii) the assignment (or matching)
of agents to targets. This is mathematically formulated
as follows:

Let N ∈ N denote the number of the agents, and
let x1, x2, . . . , xN ∈ R2 be the planar positions of the
agents and y1, y2, . . . , yN ∈ R2 be that of the targets,
which will be expressed as x , (x1, x2, . . . , xN ) and
y , (y1, y2, . . . , yN ). We denote by θ ∈ [0, 2π) and v ∈ R2

the angular rotation and the translation of the target
formation. The assignment of the agents to the targets
is described by p, which is an element of the set PN ,
i.e., the set of all possible permutations over N elements.
For example, p = {2, 3, 1}, with N = 3, means that the
agents at x1, x2, x3 are assigned to the targets at y2,
y3, y1, respectively. Furthermore, the i-th element of p is
represented by p(i).

Now, consider the following problem:

Σc(x, y) : min
(v,θ,p)∈R2×[0,2π)×PN

Jc(x, y, v, θ, p), (1)

where Jc(x, y, v, θ, p) is the cost

Jc(x, y, v, θ, p) ,
N∑

i=1

c(xi, R(θ)(yp(i) + v)). (2)

Here, R(θ) is the rotation matrix, i.e.,

R(θ) ,
[

cos θ sin θ
− sin θ cos θ

]
, (3)

and c is a performance measure. The interpretation is
that c : R2 × R2 → R gives the cost of assigning the
agent i at xi to the target located at R(θ)(yp(i) + v).

For example, if c is the square of the l2-norm
(Euclidean norm) of the difference between xi and
R(θ)(yp(i) + v), we get

Σl22
(x, y) : min

(v,θ,p)∈R2×[0,2π)×PN

Jl22
(x, y, v, θ, p), (4)

s.t. Jl22
(x, y, v, θ, p) =

N∑

i=1

‖xi −R(θ)(yp(i) + v)‖22. (5)

The corresponding optimization problem denoted as
Σl22

(x, y) is the problem under consideration in this paper.

Theorem 3.1: Suppose that N ∈ N, x1, x2, . . . , xN ∈
R2, and y1, y2, . . . , yN ∈ R2 are given. Let (v∗, θ∗, p∗)
denote a globally optimal solution to Σl22

(x, y). Then the
following holds.
(i) The optimal translation is

v∗ = R(θ∗)T xc − yc, (6)

where xc , 1
N

∑N
i=1 xi and yc , 1

N

∑N
i=1 yi are the

centers of mass of the agent and target positions, respec-
tively.
(ii) The optimal solution to the problem

min
θ∈[0,2π)

Jl22
(x, y, v∗, θ, p∗) (7)

is

θ∗ = tan−1

(
W2(v∗, p∗)
W1(v∗, p∗)

)
, (8)

where

W1(v, p) ,
N∑

i=1

xT
i (yp(i) + v),

W2(v, p) ,
N∑

i=1

xT
i

[
0 1
−1 0

]
(yp(i) + v).

(iii) The optimal (possibly not unique) assignment satis-
fies

p∗ = argmin
p∈PN

Jl22
(x, y, v∗, θ∗, p). (9)

Moreover, the problem

min
p∈PN

Jl22
(x, y, v∗, θ∗, p) (10)

corresponds to the well-known linear assignment prob-
lem.



Proof: (i) Since

Jl22
(x, y, v, θ, p) =

N∑

i=1

‖xi −R(θ)(yp(i) + v)‖22

=
N∑

i=1

[
(R(θ)T xi − yp(i) − v)T R(θ)T

R(θ)(R(θ)T xi − yp(i) − v)
]

=
N∑

i=1

[(
v − (R(θ)T xi − yp(i))

)T

(
v − (R(θ)T xi − yp(i))

)]
,

the derivative of Jl22
(x, y, v, θ, p) with respect to v is given

by

∂Jl22

∂v
=

N∑

i=1

2
(
v − (R(θ)T xi − yp(i))

)T

= 2N
(
v − (R(θ)T xc − yc)

)T
.

It should be noted that this derivative does not de-
pend on the assignment p. Hence, by noting that v∗ =
argminv∈R2 Jl22

(x, y, v, θ∗, p) for any p, and that Jl22
is

convex in v, we obtain

v∗ − (R(θ∗)T xc − yc) = 0 (11)

as the first order necessary condition for the problem
minv∈R2 Jl22

(x, y, v, θ∗, p∗), which proves (6).
(ii) From

‖xi −R(θ)(yp(i) + v)‖22 = xT
i xi − 2xT

i R(θ)(yp(i) + v)

+(yp(i) + v)T (yp(i) + v),

it follows that

θ∗ = argmin
θ∈[0,2π)

N∑

i=1

−xT
i R(θ)(yp∗(i) + v∗). (12)

In addition, we have
N∑

i=1

−xT
i R(θ)(yp(i) + v)

=−
N∑

i=1

xT
i

[
1 0
0 1

]
(yp(i) + v) cos θ

+ xT
i

[
0 1
−1 0

]
(yp(i) + v) sin θ

=− (W1(v, p) cos θ + W2(v, p) sin θ),

and hence (8) follows.
(iii) Per definition, (9) holds. In addition, by defining
ỹp(i) , R(θ∗)(yp(i) + v∗) we obtain

min
p∈PN

Jl22
(x, y, v∗, θ∗, p) = min

p∈PN

N∑

i=1

‖xi − ỹp(i)‖2,

which in turn implies that (10) corresponds to the linear
assignment problem. (See [14] for further details of the
linear assignment problem.) In this way, This completes
the proof.

Note that Jl22
is convex in θ on [−π

2 , π
2 ], but not in p,

since it is a discrete decision variable over a finite set and
convexity is only well-defined over topological spaces.

What Theorem 3.1 means is that we can solve the
problem Σl22

if two of the three optimal parameters v∗,
θ∗, or p∗ are provided. In fact, (i) implies that v∗ does
not depend upon p∗ and can be obtained by (6) if θ∗ is
provided. What (ii) shows is that θ∗ is given by (8) if v∗

and p∗ are given. Moreover (iii) implies that since (10) is
a linear assignment problem, p∗ is easily computed e.g.,
using the Hungarian method, which is a polynomial time
algorithm whose computational complexity is O(N3)
[14]. However, the problem of solving for these three
parameters simultaneously is not trivial and initial work
by the authors and coworkers suggest that this problem
is in fact NP-hard. Instead, three heuristic suboptimal
solutions are given in next section.

IV. Suboptimal Solutions

As the problem becomes more complex when we want
to optimize over the three parameters simultaneously, we
seek some feasible way which can lead us to suboptimal,
yet reasonably good solutions to the problem (4).

Note that in Theorem 3.1, (10) and (7) correspond
to (4) with fixed θ and with fixed p, respectively, which
implies that if either θ or p is fixed, (4) can be solved.
More precisely, (7) is explicitly solved and (10) can be
efficiently solved using well-known methods for the linear
assignment problem, e.g., using the Hungarian method.

First, observe that since v∗ is independent of p, and in
fact given by

v∗(θ) = RT (θ)xc − yc,

we can express the cost Jl22
(x, y, v, θ, p) without reference

to v, through

Jl22
(x, y, θ, p) =

N∑

i=1

‖xi −R(θ)(yp(i) + RT (θ)xc − yc)‖22.

Now, note that

xi −R(θ)(yp(i) + RT (θ)xc − yc)
= xi −R(θ)yp(i) − xc + R(θ)yc)
= xi − xc −R(θ)(yp(i) − yc).

Hence, with a slight abuse of notation, we can assume
that xc and yc have already been absorbed by the
state variables. In other words, we let xi , xi − xc

and yi , yp(i) − yc, which corresponds to original and
target formations whose center of mass is equal to the
origin. Since the decision variables here are p and θ, for
simplicity reason, we will denote the cost function as
J(p, θ) for given x and y, if it is clear from context.

Based on Theorem 3.1, together with the above ob-
servation we propose four methods. In what follows,
(θ#

i , p#
i ) (i = 1, 2, 3, 4) represent the corresponding sub-

optimal solutions.



Method A: Arbitrary Initial Rotation
In this method, we start from a target formation

with 0 initial rotation, i.e. θinitial = 0, and find the
resulting optimal assignment of p#

1 . Then, based on that
assignment, we find the optimal rotation angle θ#

1 , i.e.
{

p#
1 , p∗(0),

θ#
1 , θ∗(p#

1 ).
(13)

Rather than producing a particularly good solution,
this simple method gives us a basic building block from
which we can construct more sophisticated methods,
leading to better results. One way to compose a better
method is to repeat Method A, which leads to the next
method.

Method B: Iterative Method
Another possible approach for obtaining a practical

solution is to mutually and iteratively apply Theorem 3.1
(i) and (ii). In other words, repeat Method A until its
solution converges. The solution is thus given by

{
p#
2 , p#

2 (Niter)
θ#
2 , θ#

2 (Niter),
(14)

where Niter is the total number of the iterations, θ#
2 (i)

and p#
2 (i), for i = 1, 2, . . . , Niter, are defined as p#

2 (0) ,
p∗(0), θ#

2 (0) , θ∗(p#
2 (0)), and

{
p#
2 (i) , p∗(θ#

2 (i− 1))
θ#
2 (i) , θ∗(p#

2 (i)).
(15)

Using this method, we expect substantial improvements
in the solution. At the same time, the computational
cost increases linearly in Niter. However, because of the
discrete and finite set P over which p takes values, it
is unclear if this method converges, and if so, to what
accumulation point. Note that the notion of a local
minimum is ill-defined since P is not a topological space.

Proposition 4.1: Let Ji,j , J(p#
2 (i), θ#

2 (j)). For any
arbitrary robot and target positions x and y, there exists
a finite positive integer k ≤ card(P ) = N !, where card(·)
denotes cardinality, such that ∀ 1 ≤ i ≤ k

Ji−1,i−1 ≥ Ji,i−1 ≥ Ji,i. (16)

Furthermore, ∀ i ≥ k + 1
{

p#
2 (i) = p#

2 (k)
θ#
2 (i) = θ#

2 (k − 1).
(17)

Proof: From the definition (15), we have

p#
2 (i) = argmin

p∈P
J(p, θ#(i− 1))

and hence Ji−1,i−1 ≥ Ji,i−1. Moreover

θ#
2 (i) = argmin

∀θ∈(0,2π]

J(p#
2 (i), θ),

which implies that Ji,i−1 ≥ Ji,i, and hence (16) follows.
Furthermore, since p takes value in a finite set and we

know that there exists a global minimum, the iterative
sequence in (16) has to terminate in a finite number of
steps.

Remark 4.2: The solution does not necessarily con-
verge to the global minimum.

Method C: Angular Discretization
The solution (θ#

3 , p#
3 ) is given based on the discretiza-

tion of the rotation angles,{
p#
3 , p∗(θ#

3 )
θ#
3 , argminθ∈{θ̂0,θ̂1,...,θ̂d−1} J(x, y, θ, p∗(θ)),

(18)

i.e. (θ#
3 , p#

3 ) is an optimal solution to the problem

min
θ∈{θ̂0,θ̂1,...,θ̂d−1}

min
p∈PN

N∑

i=1

‖xi −R(θ)yp(i)‖2. (19)

Note that we calculate an optimal solution to (19) by
solving (10) for every θ ∈ {θ̂0, θ̂1, . . . , θ̂d−1}, where
θ∗(p) and p∗(θ) are defined in Theorem 3.1, and θ̂i ,
2πk/d (k = 0, 1, . . . , d− 1) for a given positive integer d.

Method D: Improved Angular Discretization
This is an extension of Method C in the sense that

after finding the optimal assignment p∗(θ#
3 ), we proceed

with one more step of optimization in which we find the
optimal angle with respect to p∗(θ#

3 ). Hence
{

p#
4 , p∗(θ#

3 )
θ#
4 , θ∗(p#

4 ).
(20)

V. Numerical Examples

In the previous section, we proposed several subopti-
mal solutions that are feasible to implement. Now, we
need to examine:
• Whether the results are close enough to the optimal

solution?
• How much time dose each method take?
Table I and Fig. 1 show the simulation results for

N = 8, where we take d , 100 for obtaining (θ#
3 , p#

3 )
and (θ#

4 , p#
4 ). Moreover the problem (10) is solved by the

Hungarian method, where the optimal solution obtained
by enumerating all elements of PN (note card(PN ) =
40320) is also shown.

We can see that (θ#
3 , p#

3 ) and (θ#
4 , p#

4 ) are better
than the other solutions in terms of their costs. On the
other hand, (θ#

1 , p#
1 ) is better from the viewpoint of

the computation time, while (θ#
2 , p#

2 ) might be the best
compromise between accuracy and computation time. As
the number of iterations is set to 30, the evolution of
the solution is shown in Fig. 2. It is worth noticing that
the solution is not improving after some iterations, for
Method B does not guarantee a global optimal solution.

Finally, we apply Method D to the originally posed
three-phase problem of sequential rendezvous, assign-
ment, and dispatch. An example of this is shown in
Figures 3, 4 and 5



TABLE I

Result of numerical simulations.

i 1 2(Niter , 30) 3 4 optimal

θ#
i [rad] −0.216 −1.3339 −1.916 −1.931 −1.931

{robots → p#
i }





1 → 8
2 → 3
3 → 7
4 → 1
5 → 4
6 → 2
7 → 5
8 → 6









1 → 8
2 → 3
3 → 6
4 → 4
5 → 7
6 → 5
7 → 2
8 → 1









1 → 6
2 → 8
3 → 5
4 → 4
5 → 7
6 → 1
7 → 3
8 → 2









1 → 6
2 → 8
3 → 5
4 → 4
5 → 7
6 → 1
7 → 3
8 → 2









1 → 6
2 → 8
3 → 5
4 → 4
5 → 7
6 → 1
7 → 3
8 → 2





J(θ#
i , p#

i ) 63.6973 33.9484 32.3675 32.3529 32.3529
Computation time [sec] 0.016 0.3900 0.922 0.938 260.203

Remark 5.1: Method D will lead to the global solu-
tion if the discretization of θ is fine enough. In other
words, as d becomes large enough the global minimum
will be obtained. This observation could be turned into
an algorithm (Method D’ ), where d is iteratively in-
creased. However, it is premature to declare that Method
D’ is a numerically tractable algorithm, because the
problem of choosing a lower bound on d is not known.
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Fig. 2. Changes of θ#
2 (i) and J(θ#

2 (i), p#
2 ) in Method B. Depicted

is the rotation angle as a function of the iteration number (upper
figure) together with the corresponding cost (lower figure).

VI. Discussions and Conclusion

To conclude, let us discuss some issues pertaining
to the computational complexity associated with the
different assignment algorithms. As shown in [14], the
problem (10) is solved by the Hungarian method using
O(N3) operations, which is higher than the complexity
associated with (7). This is the case since in order to
solve (7) the number of necessary function evaluations is
linear in N .

We now let N i
a (i = 1, 2, 3, 4) denote the number of

assignments that must be solved in order to compute
the four suboptimal solutions in equations (13)-(20). It
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Fig. 3. Phase I: The rendezvous procedure, starting from an
arbitrary connected graph, generate a complete graph after 0.45
second.
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Fig. 1. Result of numerical simulations: (a) Method A: (θ#
1 , p#

1 ); (b) Method B: (θ#
2 , p#

2 ); (c) Method C: (θ#
3 , p#

3 ); (d) Method D:

(θ#
4 , p#

4 ).

is straightforward to show that

N1
a = 1, (21)

N2
a = Niter, (22)

N3
a = d, (23)

N4
a = d + 1. (24)

Hence, the computational complexity associated with the
best of the four methods is O(N3d), which is certainly
less than the O(N !) obtained through permutation enu-
meration.

The question now is how to choose d in such a way
that the solution to the problem in (20) approaches the
solution to the original problem (4) as well as possible.
To this end we let nN be the average number of distinctly
different assignments encountered as θ sweeps through d
values, as d À 1. The average is obtained by generating
a large number of random formations of N agents. In
Figure 6 we have plotted nN as a function of N and it
appears that nN is linear in N . What this means is that
d should be linear in N in order to obtain an adequate
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Fig. 4. Phase II: A suboptimal assignment is obtained using
Method D.
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Fig. 6. Number of assignment related to N

solution, which implies that the complexity becomes
O(N4). However this is not sufficient to determine the
complexity of the problem since one need to ensure that
d is large enough to capture the correct assignments. And
to find this d is certainly not an easy task.

Finally, it should be noted that since the computations
must be computed across the different agents, further
complexity reductions should be possible through decen-
tralization and/or parallelization of these computations.
This endeavor is, however, left to the future.
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