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Abstract— Organizing a large-scale, heterogeneous network
of agents into clusters based on the agents’ class is a useful
preprocessing step for cooperative tasks, where agents with the
same capabilities need to be in the same location to coopera-
tively solve a task. In this paper, we investigate whether it is
possible to apply an exogenous control signal to a heterogeneous
network of agents, such that these agents form clusters of the
same class of agents. We demonstrate that if each agent belongs
to one of M “weight” classes and executes a weighted, forced
agreement protocol, then it is possible to apply an external input
signal that separates the network into M clusters corresponding
to the M classes of agents.

I. INTRODUCTION

In the wake of natural or man-made disasters, we want
to deploy robots and sensors with different capabilities that
are capable of cooperatively solving tasks of a search and
rescue mission. The tasks that need to be solved by these
heterogeneous networks often involve, but are not limited to,
surveillance ([1]), localization ([2]), or transport ([3]). There
exist several different ways agents with different capabilities
can cooperate as discussed in [4], but in particular, we are
interested in the situation when a task requires multiple
agents with the same capability to cooperate. For example,
we may want all robots with grippers to work together to
move a large object, while separately, but simultaneously, all
robots with chemical sensor work together to detect chemical
leaks. However, when it comes to deploying these systems, it
is often not feasible or too expensive to deliberately deploy
devices (as discussed in [5]) with the same capabilities
together in a specific location. For example, the disaster areas
are often not accessible and the only method to deploy the
network is to spread the agents over a region from the air.

In fact, these large-scale, heterogeneous multi-agent net-
works are typically deployed in a random fashion over some
region to keep the deployment cost small, as is described
by [6]. The first step after deployment is for the agents to
aggregate in a common location. Provided that the network is
connected, a rendezvous protocol can quickly aggregate the
network in a common location (as was shown, for example,
in [7]). Once aggregated, we want to separate the network
into clusters, each corresponding to a collection of all agents
with a particular capability. This particular way of organizing
the network would allow us to then assign each cluster of
agents to solve some task of the search and rescue mission
cooperatively.
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In this paper, we focus on separating the network into
separate connected components or “clusters” that correspond
to all agents of a particular class (where this class may
correspond to a unique capability) being co-located, but
completely separated from agents belonging to another class.
This problem has not been widely studied in robotics aside
from [8], but it is well known that in physical processes
involving granular mixtures, granules of different sizes seg-
regate under external perturbations ([9], [10], and [11]). The
authors of [8] were inspired by this phenomenon and mod-
eled robots as particles of different sizes to achieve separation
based on differences in size. Separation was mainly achieved
by having each robot broadcast its size locally and repulse
from other robots based on their reported sizes.

We were also inspired by the physical phenomenon of
achieving separation by perturbing a granular mixture, but
we have taken a different approach. We let the agents execute
a weighted, forced agreement protocol (see, for example,
[12]), where the agents are attracted to each other, rather
than repulsed. Agents within the same class have the same
weight, while agents from different classes have different
weights. Different weights in the dynamics are an analog for
the agents having different sizes. We will show that we can
apply an exogenous control signal to this network that will
completely separate agents from each other if they are in
different classes, while agents from the same class remain
together.

The application of a single, external input signal to a
large system is not novel and is known as broadcast or
ensemble control. This type of control mechanism has been
used to achieve positional consensus (demonstrated in [13]),
ensure collision avoidance (shown in [14]), align quantum
spins (discussed in [15]), and achieve geometric formations
(described in [16]). The key is that these multi-agent sys-
tems are heterogeneous, meaning that agents with different
characteristics will react differently to the same input signal.
This difference in response to an input signal is exploited to
achieve a global behavior for the network. Our contribution
is to show that there exists an external input signal that can
separate a heterogeneous network of agents into cluster of
agents of the same type.

As a first step, we derive this external signal for separating
two classes of agents and then show that it is also possible
to separate three classes of agents, while assuming that
the initial position of all agents is the same and that the
separation happens along a single dimension. Next, we
generalize to separating M classes of agents. Once we have
made this generalization, we will continue to generalize our
results to show that this network separation principle can be



applied to agents moving in multiple dimensions and to the
case when the agents start separating while co-located in a
small ball, i.e. not coincident as previously assumed. Last,
we conclude with some experimental verification in the form
of simulations.

II. A SEPARATING SIGNAL

Suppose that a network of agents is comprised of M
types of agents, belonging to one of the classes in C =
{C1, . . . , CM}. The problem we are interested in is how to
separate these M classes of agents from each other without
separating agents from the same class. As an initial way of
approaching this problem, let us assume that the agents in
the different class somehow carry different weights, such that
they respond differently to an external signal. In addition,
assume that these agents are all running a local, forced
agreement protocol, in the sense that

ẋi = γπ(i)

 ∑
j∈N(i)

(xj − xi) + u

 , (1)

where xi is the position of agent i, γπ(i) is a scalar weight,
N(i) is the set of neighbors that agent i has in the network,
and u is an exogenous input signal. The set of neighbors is
defined by the condition ‖xj − xi‖ ≤ ∆, i.e. j ∈ N(i) and
i ∈ N(j) if agents i and j are close enough to each other.
It is important to note that a neighborhood, N(i), is not a
function of class, since an agent is not aware of its neighbor’s
class. The key object in (1) is the class membership function
π : N → C, where N = {1, . . . , N} is the set of all agents,
i.e the function π maps agent i into one of the M classes with
weights γ1, γ2, . . . , γM . The notion that these classes weigh
differently is encoded in the following two properties:

1) Each class has a unique weight; otherwise, any two
classes with the same weight can be merged into a
single class.

2) The weights can be ordered in ascending order,

0 < γ1 < γ2 < . . . < γM ,

by simply relabeling C if necessary.
What we aim to do is come up with a separating signal u
that ensures that the agents are separated from each other,
as is illustrated in Fig. 1. This signal will be broadcast
simultaneously to all agents. As a first step towards deriving
such a separating signal, let us first assume that a) the agents
are all scalar, i.e., that xi ∈ R, and b) that all agents start at
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Fig. 1. Separation of ∆ between two classes using an external signal u
applied to all agents simultaneously.

the same position, i.e., xi(0) = xj(0),∀(i, j). We will first
consider the two class case, then the three class case, and
finally, we will generalize to M classes. The two class case
will provide us with a way to separate two classes, while the
three class case will provide us with a strategy for separating
more than two classes by using the results from the two class
case. It is then possible for us to use the results from these
two cases to generalize to M classes.

A. Two Classes

Under the two assumption, xi(0) = xj(0),∀(i, j) and
xi ∈ R, we will derive a constant, scalar separating signal
that is guaranteed to achieve a desired separation of greater
than ∆ between the two classes. In fact, assume that there
are N1 agents of C1 and N2 agents of C2. Since all agents
within a class start at the same position and execute the same
dynamics, they will always stay together under any input
signal u. As such, if we let χi be the position of any member
of Ci, i = 1, 2, we can let d12 = χ2−χ1 denote the distance
separating the two classes. And, the system dynamics for the
two classes become

χ̇1 = γ1(N2d12 + u), χ̇2 = γ2(−N1d12 + u)

or

ḋ12 = χ̇2 − χ̇1 = (γ2 − γ1)u− (γ2N1 + γ1N2)d12. (2)

Now, assume that the agents are no longer connected if an
inter-agent distance is greater than ∆, i.e. if i ∈ C1, j ∈ C2,
then j /∈ N(i), i /∈ N(j) when |xj − xi| > ∆.

Theorem 1: u is a scalar, constant separating signal if

u >
(γ2N1 + γ1N2)∆

γ2 − γ1
, (3)

which ensures that ḋ12 > 0 when d12 ∈ [0,∆], i.e.,
guarantees that all agents belonging to different classes are
completely separated by a distance greater than ∆.

Proof: The proof follows directly from applying ḋ12 >
0 to (2) and solving for u to get

u >
(γ2N1 + γ1N2)d12

γ2 − γ1
.

u > 0 is needed to start the separation process when d12 = 0.
Since d12 increases monotonically on the interval [0,∆], it
is sufficient to suppose that d12 = ∆ and require that

u >
(γ2N1 + γ1N2)∆

γ2 − γ1

is applied on the interval.
Then, a scalar, constant separating signal u is

u =
(γ2N1 + γ1N2)(∆ + ε)

γ2 − γ1
, (4)

where ε > 0.
Moreover, we can explicitly compute the duration Ts for

which u needs to be applied to ensure that no two agents
from different classes are connected.



Corollary 1: To separate the two classes, u needs to be
applied for a duration of

Ts =
ln
(

∆+ε
ε

)
γ1N2 + γ2N1

, (5)

where ε > 0.
Proof: The distance separating the two classes at time

t is

d12(t) =

∫ t

0

e−(γ2N1+γ1N2)(t−s)(γ2N1 + γ1N2)(∆ + ε)ds

= (∆ + ε)
(

1− e−(γ2N1+γ1N2)t
)
,

(6)

where d12(0) = 0 is the initial condition. At time Ts, we
know that d12(Ts) = ∆, so we can solve (6) in terms of
Ts to get (5). Since ḋ12(Ts) > 0, the two classes will be
separated by a distance greater than ∆ after Ts time.

B. Three Classes
The next step is to find a separating signal u, which can

completely separate agents belonging to three classes, C1,
C2, and C3. We will use this result as a stepping stone for
generalizing our results to M classes. With the addition of
C3, we define d23 to be distance between agents in C2 and
C3 and d13 to be the distance between agents in C1 and C3.
Let d13 = d12 + d23, such that d13 > d12 and d13 > d23

during the separation process, i.e. t > 0. Recall that the
initial conditions are d13(0) = d12(0) = d23(0) = 0.

The system dynamics for the three classes before separa-
tion are

χ̇1 = γ1(N2d12 +N3d13 + u),

χ̇2 = γ2(−N1d12 +N3d23 + u),

χ̇3 = γ3(−N1d13 −N2d23 + u).

(7)

Instead of finding a single separating signal u, we are
going to be strategic and find a series of separating signals
uM , . . . , u2 that separate the classes by peeling off classes in
descending order of their weights. For example, in the three
class problem, u3 will separate C3 from C2 and C1, and u2

will separate C2 from C11.
First, we want to find u3 that separates C3 from C2. u3

will also separate C3 from C1, since when d23 > ∆, then
d13 > ∆ must be true, because d13 > d23 by definition. As
before, we want ḋ23 > 0 when d23 = ∆:

ḋ23 = χ̇3 − χ̇2 > 0

= γ3(−d13N1 − d23N2 + u3)

− γ2(−d12N1 + d23N3 + u3) > 0

(8)

Suppose we find a u3 that satisfies this inequality and
achieves a separation of C3 from C1 and C2. The dynamics
are now sightly different:

χ̇1 = γ1(N2d12 + u2),

χ̇2 = γ2(−N1d12 + u2),

χ̇3 = γ3u2.

(9)

1When we state that we want to separate Ci from Cj , what we really
mean is that we want to separate the agents in Ci from the agents in Cj .

Since we now want ḋ12 ≥ 0 when d12 = ∆, the separating
signal u2 that separates C1 and C2 is exactly (4).

It is important to note that this strategy seems to ignore
the change in dynamics that occurs when C1 and C3 separate
before C2 and C3 have separated. Similarly, depending on
the choice of parameters γ1, γ2, and γ3, as well as, N1,
N2, and N3, C1 and C2 may have separated before C2 and
C3 separate. This scenario renders applying u2 unnecessary.
Therefore, this strategy will not be optimal; however, we
will show that this strategy will still successfully separate
the three class. Our motivation is to define a simple strategy,
which will guarantee the separation of the different classes
of agents independent of the parameters (with respect to the
strategy only, not with respect to how the input signals are
defined).

Theorem 2: u3 is a scalar, constant separating signal if

u3 >
(γ3(N1 +N2) + γ2N3)∆

γ3 − γ2
, (10)

which ensures that ḋ23 > 0 when d23 ∈ [0,∆], i.e.
guarantees that all agents belonging to C3 are separated from
all agents in C1 and C2. Once this separation has occurred,
the scalar, constant separating signal u2 equal to (4) can
be applied to separate agents belonging to C2 from agents
belonging to C1.

Proof: We want to find u3 that guarantees ḋ23 > 0
when d23 = ∆. First we solve for u3 in (8).

u3 >
(γ3N2 + γ2N3)d23 + (γ3d13 − γ2d12)N1

γ3 − γ2

We select a sufficiently large u3 by applying the fact that
d13 > d23 and γ2d12 > 0:

u3 >
(γ3(N1 +N2) + γ2N3)d13

γ3 − γ2

=
(γ3(N1 +N2) + γ2N3)(∆ + ε)

γ3 − γ2
,

where ε > 0.
This is not an airtight upper bound, since the contribution

from agents in C1 will be zero sometime before d23 = ∆
and separation between C2 and C3 is achieved. However, it
still guarantees that ḋ23 > 0 when d23 ∈ [0,∆].

Once C3 is separated from C1 and C2, we are justified
in using u2 as defined by (4) to separate C1 and C2 if and
only if the inequality ḋ23 ≥ 0 still holds when applying
u2. Otherwise, we cannot guarantee that C2 and C3 remain
separated. After separation,

ḋ23 = γ3u2 − γ2(−d12N1 + u2) ≥ 0,

so we need to plug in u2 and make sure the inequality holds.

u2 =
(γ2N1 + γ1N2)(∆ + ε)

γ2 − γ1
≥ −γ2d12N1

γ3 − γ2

We can directly see that this inequality will hold, because a)
γ3 > γ2 > 0, and b) γ2d12N1 > 0. Therefore, if we use u3

to separate C3 from C1 and C2 and then u2 to separate C2
from C1, we are able to completely separate all three classes
from each other.



Moreover, we can compute a duration for applying u3,
Ts,3, that is sufficient to separate C3 from the other two
classes and a duration of applying u2, Ts,2, that is sufficient
to separate C2 from C1. These durations will be relaxed upper
bounds, because of the following two assumptions:

1) We assume that the dynamics in (7) are unchanged on
the interval [0, Ts,3], which is not accurate, since C1
separates from C3 before C2, and C1 may even separate
from C2 before then depending on the weights and the
sizes of the classes.

2) We assume that d12(Ts,3) = 0, which is not accurate,
since d12 > 0 is guaranteed by the fact that γ1 6= γ2.

Under these assumptions, we can compute a simple schedule
for applying u3 and u2 to achieve separation of the three
classes.

Corollary 2: To separate the three classes, C1, C2, and C3,
we will apply the signal u3 for a duration of Ts,3 and at time
Ts,3, we will apply the signal u2 for a duration of Ts,2, where
Ts,3 and Ts,2 are defined as,

Ts,3 =
ln
(

∆+ε
ε

)
γ3(N1 +N2) + γ2N3

Ts,2 =
ln
(

∆+ε
ε

)
γ1N2 + γ2N1

,

(11)

and ε > 0.
Proof: The proof follows the same process as Corollary

1 by deriving d23(t) on the interval t ∈ [0, Ts,3] and solving
d23(Ts,3) = ∆ for Ts,3. d23(t) is derived from (7) assuming
that these dynamics are unchanged on the interval [0, Ts,3].
d12(t) is derived from (9) on the interval t ∈ (Ts,3, Ts,2]. We
solve d12(Ts,2) = ∆ for Ts,2 and assume that d12(Ts,3) = 0
to find the time to separate C1 and C2 as in Corollary 1.

This simple schedule is not optimal. We will hold u3 for
longer than is needed to separate C3 from C2, because we
assume that the dynamics do not change on the interval
[0, Ts,3]. Similarly, assuming that d12(Ts,3) = 0 is pes-
simistic, since d12 > 0 is guaranteed by the fact that γ1 6= γ2.
The consequence is that we will hold u2 for longer than is
needed to separate C2 from C1. We could be more exact in
computing these durations, since the parameters are known,
and thus, we know how the system evolves. However, we
are motivated to find a strategy that is simple to implement,
in the sense that this strategy is independent of the choice in
parameters (weights and sizes of the classes) that determine
the order of separation2. Despite the lack of optimality, this
strategy of applying u3 for Ts,3 and then applying u2 for
Ts,2 will separate the three classes successfully.

C. M Classes

The next step is to find a similar strategy to completely
separate agents belonging to M classes, C1, . . . , CM . We
define dij to be the distance between agents in Ci and Cj .

2Independence from the parameters does not imply that u or Ts do not
depend on the parameters, but rather that we can apply u for Ts time to
separate two specific classes without worrying about how exactly these two
classes separate from the other classes.

If three classes, Ci, Cj , and Ck, are ordered such that γi <
γj < γk, then by our previous construction, dik = dij +djk,
such that dik > dij and dik > djk (with the exception of the
initial conditions, where dik(0) = dij(0) = djk(0) = 0).

The system dynamics for the M classes before any sepa-
ration are

χ̇i = γi

(
M∑
k=1

Nkdik + u

)
,

where dii = 0 and dik = −dki.
Instead of finding a single separating signal u, we are

going to again be strategic and find a series of separating
signals, uM , . . . , u2, that separate the classes by peeling off
classes in descending order of their weights.

First, we want to find uM that separates CM from CM−1.
uM will also separate CM from CM−2, . . . , C1. Next, we want
to find uM−1 that separates CM−1 from CM−2, and so on
until we have separated all of the M classes from each other.

As was the case before, we will assume that the dynamics
are unchanged while we separate two classes, even though
Ck−2 would separate from Ck before Ck and Ck−1 have
separated, and Ck−1 may even separate from Ck−2 before
separation between Ck and Ck−1 has been achieved. As we
have shown before, uk will still be an input signal that
separates Ck and Ck−1, . . . , C1 successfully.

Theorem 3: uM , . . . , u2 is a series of scalar, constant
separating signals that separate M classes completely, i.e.
dij > ∆,∀i 6= j, and i, j ∈ {1, . . . ,M}, if

uk >

(
γk
∑k−1
j=1 Nj + γk−1Nk

)
∆

γk − γk−1
, (12)

where k ∈ {2, . . . ,M}.
Proof: We want to find uk that separates agents in

Ck from the agents in C1, . . . , Ck−1. Assuming that when
uk is applied, Ck+1, . . . , CM are already separated from
C1, . . . , Ck, then we know from the developments in the
previous sections that uk is of the form (12). However,
we have to make sure that applying uk does not result
in the merging of any of the already separated classes
Ck+1, . . . , CM . Therefore, the following inequality must be
satisfied,

uk ≥ −
γk
∑k−1
j=1 djkNj

γk+1 − γk
,

for all k = 2, . . . , (M − 1) such that Ck and Ck+1 do not to
merge, as well as, that uk ≥ 0 such that none of the separated
classes Ck+1, . . . , CM merge. Both of these inequalities are
satisfied by the fact that uk is always positive by inspection
of (12).

Moreover, we can again compute a duration of applying
uM , Ts,M , that is sufficient to separate CM from the other
classes, a duration of applying uM−1, Ts,M−1, that is suffi-
cient to separate CM−1 from the other classes, and so on. As
before, we apply the assumption that the dynamics do not
change while a class Ck is separated from Ck−1 and the other
classes, and that when we start separating Ck from Ck−1,
that distance separating Ck from Ck−1, . . . , C1 is zero. These



assumptions, as before, lead to conservative upper bounds on
the durations that the input signals are applied to separate the
classes.

Corollary 3: To separate the M classes, C1, . . . , CM , we
will apply the signal uM for a duration of Ts,M , and at
time Ts,M , we will apply the signal uM−1 for a duration of
Ts,M−1, and so on, where uk is held for a duration of Ts,k,

Ts,k =
ln
(

∆+ε
ε

)
γk
∑k−1
j=1 Nj + γk−1Nk

, (13)

where k = M, . . . , 2 and ε > 0. Let Ts,M+1 = 0.
Proof: Suppose that we pick the separating signal such

that

uk =

(
γk
∑k−1
j=1 Nj + γk−1Nk

)
(∆ + ε)

γk − γk−1
.

The proof follows directly from the proof of Corollary 1
by deriving d(k−1)k(t) on the interval t ∈ [Ts,k+1, Ts,k] and
solving d(k−1)k(Ts,k) = ∆ for Ts,k, as if d(k−1)k(Ts,k+1) =
0.

This strategy is not optimal for the same reasons as before.
Assuming that d(k−1)k(Ts,k+1) = 0 is pessimistic, since
d(k−1)k > 0 is guaranteed by the fact that γk−1 6= γk.
Similarly, assuming that the dynamics do not change when
peeling a class away from the rest of the classes is not
accurate. The consequence is that we will hold uk for
longer than is needed to separate Ck from C1, . . . , Ck−1,
∀k = 2, . . . ,M . However, complete separation of all M
classes is achieved under this strategy.

D. Other Generalizations

In the previous sections we assumed that xi ∈ R; however,
the exact same arguments apply to non-scalar agents (xi ∈
Rn, n ≥ 2) under the same dynamics. The only difference
is that we still insist on a constant uk, where the separation
condition becomes

‖uk‖ >
(γk
∑k−1
j=1 Nj + γk−1Nk)∆

γk − γk−1
.

This condition follows from the fact that the dynamics are
decoupled along all dimensions and that the magnitude of
uk is independent of its direction in Rn.

We want to be able to remove our assumption about the
initial conditions, i.e., that xi(0) = xj(0), ∀(i, j). These
initial condition could be achieved by simply running the
unforced version of the dynamics, which we know will
asymptotically drive all agents to a common location (as
long as the network stays connected). However for practical
purposes, it may be too long to wait for all agents to converge
to exactly the same location, so what we will do is see
how the argument needs to change when we insist that
‖xi(0)− xj(0)‖ ≤ 2δ, ∀(i, j) for a given, small δ > 0.

To show that separation is possible between two classes,
C1 and C2, we need to show that u is a constant, separating
signal that completely separates all pairs of agents (i, j), i ∈
C1, j ∈ C2. In fact, we will show that if we assume that

∆ > 4δ, xi ∈ R, and pick a u that separates the centroids
of the two classes by ∆ + 2δ, then

1) While the network is completely connected, the cen-
troids are separating, i.e. ˙̄x2 − ˙̄x1 > 0, and agents are
moving towards the centroid of their class.

2) Once some of the agents from the two classes start
separating, ˙̄x2 − ˙̄x1 > 0 holds and the closest pair
(i, j), i ∈ C1, j ∈ C2 is separating.

Lemma 1: If the agents are initially co-located in a δ-ball,
i.e. |xi(0)− xj(0)| ≤ 2δ, ∀(i, j) and ∆ > 4δ, then an input
signal

u >
(γ1N2 + γ2N − 1)(∆ + 2δ)

γ2 − γ1
,

will ensure that ˙̄x2 − ˙̄x1 > 0 on the interval (x̄2 − x̄1) ∈
[−2δ,∆ + 2δ].

Proof: Suppose x̄k(t) is the centroid of the positions
of the agents in class Ck, i.e.

x̄k(t) =
1

Nk

∑
j∈Ck

xj(t),

then, the first step is to find the derivative of the two
centroids, ˙̄x1 and ˙̄x2. We can rewrite Equation (1) for an
agent xi ∈ C1 as,

ẋi = γ1

 ∑
j∈N(1)

(xj − xi) +
∑

j∈N(2)

(xj − xi) + u

 ,

= γ1 (N1(x̄1 − xi) +N2(x̄2 − xi) + u) ,

under the assumption that all agents of C1 and C2 are
connected. This assumption is certainly true while all agents
are inside the δ-ball and before the distance between any two
agents from different classes exceeds ∆. Then,

˙̄x1 =
1

N1

∑
j∈C1

ẋj

=
γ1

N1

∑
j∈C1

(N1(x̄1 − xj) +N2(x̄2 − xj) + u)

= γ1 (N2(x̄2 − x̄1) + u)

Following the same procedure, we can compute ˙̄x2,

˙̄x2 = γ2 (N1(x̄1 − x̄2) + u) ,

and in turn we can compute,

˙̄x2 − ˙̄x1 = γ2 (N1(x̄1 − x̄2) + u)− γ1 (N2(x̄2 − x̄1) + u)

= −(γ2N1 + γ1N2)(x̄2 − x̄1) + (γ2 − γ1)u

Without an external input, u = 0, the distance between
the centroid decays to zero asymptotically; however, if we
were to apply

u =
(γ2N1 + γ1N2)(∆ + 2δ + ε)

γ2 − γ1
, (14)

where ε > 0, then we ensure that the distance between the
centroids is always increasing.

One of the assumptions we made is that all agents of
C1 and C2 are connected during the separation process;



however, we know that not all agents of C1 will separate
from all agents of C2 simultaneously. In fact, the dynamics
will change as agents start to separate, but we will show that
u will still ensure complete separation of the two classes.

Suppose that an agent, xi ∈ C1, starts to separate from
some of the agents in C2, and therefore, this agent’s dynamics
change to

˙̃xi = γ1

 ∑
j∈N(1)

(xj − xi) +
∑

j∈Ñ(2,i)

(xj − xi) + u

 ,

where Ñ(2, i) is the set of Ñ2,i agents from class C2 that are
still connected to agent xi from class C1. As a consequence,
the dynamics of the centroid of class C1, now denoted ˜̄x1,
are also changed to

˙̄̃x1 =
γ1

N1

∑
j∈C1

 ∑
k∈Ñ(2,j)

(xk − xj) + u


≤ γ1 (N2(x̄2 − x̄1) + u) ,

and similarly,

˙̄̃x2 =
γ2

N2

∑
j∈C2

 ∑
k∈Ñ(1,j)

(xk − xj) + u


≥ γ2 (N1(x̄1 − x̄2) + u) .

Therefore,

˙̄̃x2 − ˙̄̃x1 ≥ γ2 (N1(x̄1 − x̄2) + u)− γ1 (N2(x̄2 − x̄1) + u)

= −(γ2N1 + γ1N2)(x̄2 − x̄1) + (γ2 − γ1)u.

If we apply u as defined in Equation (14), then ˙̄̃x2− ˙̄̃x1 > 0
continues to hold even if some of the pairs (i, j), i ∈ C1, j ∈
C2, have separated.

Lemma 2: If the agents are initially co-located in a δ-
ball, i.e. |xi(0) − xj(0)| ≤ 2δ, ∀(i, j), ∆ > 4δ, and while
(x̄2 − x̄1) ∈ [−2δ, 2δ], the network is completely connected
and each agent is moving towards the centroid of their class.

Proof: We want to be able to show that while the
networks is still completely connected (which is certainly
true while |x̄2− x̄1| ≤ 2δ, because ∆ > 4δ), agent i ∈ C1 is
moving towards x̄1 and agent j ∈ C2 is moving towards x̄2:

˙̄x1 − ẋi = γ1 (N2(x̄2 − x̄1) + u)

− γ1 (N1(x̄1 − xi) +N2(x̄2 − xi) + u)

= −γ1(N1 +N2)(x̄1 − xi),

and similarly,

˙̄x2 − ẋj = −γ2(N1 +N2)(x̄2 − xj).

These equations show that each agent is moving towards the
centroid of their class. The result is that if we have separated
the centroids by 2δ, we can be sure that all agents j ∈ C2
are to the right of all agents i ∈ C1, i.e. xj > xi, ∀(i, j).

Unfortunately, once some of the agents start to separate,
we can no longer guarantee that agents are moving towards

the centroid of their class. However, we can show that the
closest pair (i, j), i ∈ C1, j ∈ C2 continues to separate.

Lemma 3: Once some of the agents from the two different
classes have started to separate, the closest pair (i, j), i ∈
C1, j ∈ C2 is separating if we continue to apply

u >
(γ1N2 + γ2N − 1)(∆ + 2δ)

γ2 − γ1
,

i.e. ẋj − ẋi > 0.
Proof: Suppose Ñ2,i is the number of agents of C2 that

agent i can detect, then ˜̄x2,i is the centroid of those agents.
Similarly, Ñ1,j is the number of agents of C1 that agent j can
detect, and ˜̄x1,j is the centroid of those agents. Recall that we
have separated the two classes in such a way that x̄2 > x̄1,
x̄2 > ˜̄x2,i, x̄1 < ˜̄x1,j , and xj > xi. If (i, j), i ∈ C1, j ∈ C2
is the closest pair, then x̄1 < xi and x̄2 > xj . We will use
these inequalities to show that ẋj − ẋi > 0:

ẋj − ẋi = γ2(Ñ1,j(˜̄x1,j − xj) +N2(x̄2 − xj) + u)

− γ1(N1(x̄1 − xi) + Ñ2,i(˜̄x2,i − xi) + u)

= (γ2 − γ1)u+ γ2N2(x̄2 − xj)− γ1N1(x̄1 − xi)
+ γ2Ñ1,j(˜̄x1,j − xj)− γ1Ñ2,i(˜̄x2,i − xi)
> (γ2 − γ1)u+ γ2N2(x̄2 − xj)− γ1N1(x̄1 − xi)
+ γ2N1(x̄1 − xj)− γ1N2(x̄2 − xi)
= (γ2 − γ1)(u+N1x̄1 +N2x̄2)

− γ2(N1 +N2)xj + γ1(N1 +N2)xi

> (γ2 − γ1)(u+N1x̄1 +N2x̄2)

− γ2(N1 +N2)x̄2 + γ1(N1 +N2)x̄1

= (γ2 − γ1)u− (γ2N1 + γ1N2)(x̄2 − x̄1)

= ˙̄x2 − ˙̄x1 > 0

Since the centroids and the closest pair (i, j), i ∈ C1, j ∈ C2
are separating under u from Equation (14), we know that
the two classes continue to separate even as some of the
agents in each class have already separated. However, we
have no guarantee that the centroids are not separating
significantly faster than the closest pair, such that when
the centroids are separated by ∆ + 2δ, the closest pair is
separated by distance less than ∆. Therefore, there may exist
a permutation of γ1, γ2, N1, and N2, for which u is not
sufficient to separate the two classes. Despite this possibility,
we can make the following conjecture based on these lemmas
and our simulations:

Conjecture 1: If the agents are initially co-located in a δ-
ball, i.e. ‖xi(0) − xj(0)‖ ≤ δ, ∀(i, j), then it is possible
to completely separate two classes of agents, C1 and C2,
by separating the centroids of the two classes by a distance
greater than ∆ + 2δ. u is a separating signal if

u >
(γ1N2 + γ2N1)(∆ + 2δ)

γ2 − γ1
, (15)

where δ > 0 and ∆ > 4δ.



III. SIMULATIONS

We want to verify numerically in simulation whether
our results hold, and demonstrate the effect of varying the
parameters γk and Nk for each of the M classes. First, let
us consider the two class case, where we are interested in
separating C1 from C2. Figure 2 demonstrates a successful
separation using the control signal

u =
(γ2N1 + γ2N2)(∆ + ε)

γ2 − γ1
,

for some ε > 0. The separation distance ∆ is indicated by
the black dashed line. The distance between the two classes
logarithmically approaches ∆ until separation occurs, after
which the distance that separates the two classes increases
quickly. If it were the case that u was not sufficient to
separate the two classes, we would see that the distance
between C1 and C2 in the plots would stay under the black
dashed line.

Figure 2a illustrates the effect of varying N1 and N2, while
Fig. 2b illustrates the effect of varying γ1 and γ2. In all
cases, the distance between C1 and C2 eventually exceeds the
separation distance ∆ (the black dashed line in the figures).

We can also demonstrate that our choice of uM , . . . , u2

applied to the case when we want to separates six classes,
C1, . . . , C6 is also successful. Again, a failure to separate a
pair of classes (i.e., uk is not sufficient for separation) would
have been indicated by one of the separation distances (lines
in the plot) staying under the black dashed line. Figure 3
illustrates that we can successfully separate the six classes
from each other. In both cases, all classes have the same
number of agents, i.e. N1 = . . . = N6 = 10. Figure 3a
specifically considers the case when the inter-class difference
in γ increases, i.e. γ2−γ1 < γ3−γ2 < . . . < γ6−γ5. In this
scenario, C6 and C5, . . . , C1 completely separate first, then
C5 and C4, . . . , C1 separate completely, and so on. Figure 3b
illustrates the simple schedule used to separate the classes.
In this scenario, u6, u5, and u4 are sufficient to actually
separate all M classes.

Last, we want to demonstrate that if the agents move in
R2 and do not start in the same location, namely they are co-
located in some δ-ball, then we can still achieve separation
using the control signal

u =
(γ2N1 + γ2N2)(∆ + 2δ + ε)

γ2 − γ1
,

for some δ, ε > 0.
Figure 4 illustrates the case where 100 agents in C1

separate from 75 agents in C2. The separation distance when
any two agents disconnect is ∆ = 0.4, and all agents
start from a location within a δ-ball, where δ = 0.1. The
centroids of the two classes are separated by a distance
greater than ∆+2δ when the simulation ends. The minimum
separation between two agents of each class is ∆min, and
since ∆min > ∆, the two classes are completely separated.
Figure 4a illustrates the case when xi ∈ R, while Fig. 4b
illustrates the case when xi ∈ R2. The signal u separates the
two classes in both cases.
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Fig. 2. Successful separation of C1 and C2 for a variety of parameters.
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