
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Autonomous Robots manuscript No.
(will be inserted by the editor)

A provably complete exploration strategy by constructing
Voronoi diagrams

Jonghoek Kim · Fumin Zhang · Magnus Egerstedt

Received: date / Accepted: date

Abstract We present novel exploration algorithms and
a control law that enables the construction of Voronoi

diagrams over unknown areas using a single vehicle

equipped with range sensors. The control law uses range

measurements to make the vehicle track Voronoi edges
between obstacles. The exploration algorithms make

decisions at vertices in the Voronoi diagram to expand

the explored area until a complete Voronoi diagram is

constructed in finite time. Our exploration algorithms

are provably complete, and the convergence of the con-
trol law is guaranteed. Simulations and experimental

results are provided to demonstrate the effectiveness of

both the control law and the exploration algorithms.

Keywords Voronoi Diagrams · Map-making Algo-

rithms · Robot Control

1 Introduction

This paper addresses the problem of exploring an un-

known workspace using one vehicle equipped with range
sensors. Such sensors have ability to determine a point

on obstacle boundary that is closest to the vehicle. We

call such a point the closest point. If boundary curves

appear on both the left and the right hand sides of
the vehicle, then a closest point can be determined

on each boundary. The path that has equal distances

from these closest points is a Voronoi edge. All Voronoi

edges form the Voronoi diagram that reveals the topo-

logical structure of the workspace. If the vehicle visits

Jonghoek Kim · Fumin Zhang · Magnus Egerstedt
School of Electrical and Computer Engineering,
Georgia Institute of Technology, USA
E-mail: jkim37@gatech.edu
fumin@gatech.edu
magnus@ece.gatech.edu

all Voronoi edges in the workspace under certain algo-
rithms, then we consider the workspace as being com-

pletely explored.

Voronoi diagrams have been widely used in vari-

ous areas such as biology [6,24], computational geome-

try [15,19,20,28], VLSI design [32], and sensor networks
[3,12,23]. In robotics, Voronoi diagrams have been uti-

lized to obtain paths that satisfy minimum clearance

requirements [1, 4, 16, 29, 34]. Voronoi diagrams can be

generalized into higher dimensions, and also fit a wide
class of robots with higher dimensional configuration

spaces [7, 8]. Several extensions of Voronoi diagrams

have been developed by other researchers, including the

generalized Voronoi graph (GVG), the hiearchical GVG

(HGVG) and the reduced GVG (RGVG)1 in [7, 10, 11,
26]. The exploration of an unknown workspace by in-

crementally constructing the Voronoi diagram was pre-

viously achieved in [8, 29, 33]. But convergence of the

algorithms is not proved in the above references.

In order for the vehicle to follow a Voronoi edge,

we develop a Voronoi edge tracking control law that is

provably convergent. This law is based on the shape

dynamics derived in [36] and [38], where a gyroscopic

feedback control law was developed to control the inter-
action between the vehicle and the closest point so that

the vehicle follows the obstacle boundary either to the

left or to the right. This controller design method was

generalized to cooperative motion patterns on closed
curves for multiple vehicles in [35, 37], and extended

to the design of pursuit-evasion laws in three dimen-

sions [30]. The closest point was also used for path fol-

lowing in earlier works such as [31]. Our curve tracking

control law extends previous works by using informa-

1 Our notion of Voronoi diagrams is similar to the RGVG in
that no Voronoi edge is connected to the obstacle boundaries.

*Manuscript
Click here to download Manuscript: FinalAutoRobot14.tex Click here to view linked References

http://www.editorialmanager.com/auro/download.aspx?id=52857&guid=8a1b6e73-9cc1-4dd7-994d-1c2a177f6b7f&scheme=1
http://www.editorialmanager.com/auro/viewRCResults.aspx?pdf=1&docID=932&rev=2&fileID=52857&msid={A8C082F0-1A02-4D9D-B42B-7E5CBF598378}

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

2

tion from the closest points on both sides of the vehicle.

This results in a tracking behavior of the Voronoi edge

between two obstacles.

To make a robot track a Voronoi edge, the authors

of [8] used a numerical continuation method that re-

lies on two iterative stages : a prediction step and a

correction procedure. Since the prediction step makes
the robot move off the GVG edge, this continuation

method may produce zigzag movements of the robot [9].

Furthermore, after the correction procedure, the robot

must rotate again to re-orient itself on a Voronoi edge.

These rotations may take time and cause additional
wheel slippage [9]. Later, a control law was presented

in [9], which provided a smoother path than the nu-

merical continuation method [8]. However, smoothness

of the robot’s trajectory was not ensured. Note that
the curvature of obstacle boundaries was not consid-

ered in [8, 9]. In contrast, our tracking control law uti-

lizes estimated curvature that is well defined along the

trajectory of the vehicle. Hence, we can guarantee that

the trajectory of the vehicle is smooth. MATLAB sim-
ulations in Section 7.1 verifies that our control law pro-

duces a smooth path.

Utilizing the Voronoi edge tracking behavior, we
develop provably complete exploration algorithms, de-

noted as the boundary expansion (BE) algorithms, which

enable the construction of a topological map based on

Voronoi diagrams. Although many results exist in liter-
ature regarding the construction of Voronoi diagrams,

to our knowledge, the BE algorithms are unique, with

provable completeness over a compact workspace.

The BE algorithms are composed of two algorithms,

denoted by Algorithm 1 and Algorithm 2 in this paper.

Applying Algorithm 1, the trajectory of a vehicle con-

structs a simple closed curve that encloses an obstacle

to its right. Then, using Algorithm 2, the vehicle itera-
tively expands the explored area in such a way that one

obstacle is added to the area at a time. In this way, the

vehicle constructs a Voronoi diagram by “expanding”

the explored area in discrete and finite steps.

In the BE algorithms, only the graph structure rep-

resenting the boundary of the explored area is main-

tained and updated based on two simple rules. We do
not explicitly search for the shortest path in the graph

as in many other exploration algorithms [10, 29, 33].

Hence, the BE algorithms may have lower computa-

tional load.

We implement the algorithms and the control law

on a miniature robot localizing itself based on an odom-

etry system. The robot uses only Infrared (IR) sensors
for range measurements. Both simulations and experi-

mental results demonstrate the effectiveness of the al-

gorithms.

The paper is organized as follows. Section 2 presents

the workspace to be explored. Section 3 introduces the

provably convergent control law to track Voronoi edges.

Section 4 discusses the BE algorithms. Section 5 pro-

vides proofs for the convergence of the BE algorithms.
Section 6 analyzes the efficiency of the BE algorithms.

Section 7 demonstrates simulation and experimental re-

sults, and Section 8 provides conclusions.

2 The Workspace and Its Voronoi Diagram

Consider a connected and compact workspace W ⊂ R2

whose boundary, ∂W , is a regular curve. LetO1,O2,...OM−1

be M − 1 disjoint and compact obstacles such that
Oi ⊂ W . OM is a “virtual” obstacle that bounds the

workspace, i.e., ∂W ⊂ ∂OM . We denote the set of ob-

stacles SO by SO = {O1, O2, ..., OM}.
Obeying the conventions established in the litera-

ture on Voronoi diagrams [2,7,20,21,26], we define the
Voronoi cell for an obstacle Oi as the set of points that

is closer to Oi than to any other obstacle in So for

i = 1, 2, ...,M i.e.

V (Oi) = {q ∈ W | min
z∈Oi

‖z − q‖ < min
z′∈O′

i

‖z′ − q‖,

∀O′

i ∈ SO \Oi}, (1)

where ‖ · ‖ is the Euclidean norm in R2. ∂V (Oi) is the

boundary of the Voronoi cell for Oi, i.e., V (Oi). Also,

V (Oi) = V (Oi)
⋃
∂V (Oi). The Voronoi diagram of the

workspace is defined as the union of all cell boundaries
[20] i.e.

D(W) =
⋃

Oi∈SO

∂V (Oi). (2)

The shared boundary of two Voronoi cells is a Voronoi

edge. More specifically, a Voronoi edge between two

Voronoi cells V (Oi) and V (Oj) is defined by

Eij = ∂V (Oi)
⋂

∂V (Oj). (3)

3 Tracking one Voronoi edge

In this section, we develop a feedback control law to

make a vehicle, with its dynamics approximated by a

unit speed particle, move along a Voronoi edge. We as-
sume that the range sensors of the vehicle can detect

two obstacle boundaries on the right and the left hand

side of the vehicle. Then, on each obstacle boundary,

the vehicle can determine a point that is closest to the
vehicle. The feedback control law uses measurements

at the two closest points on the right and the left hand

sides of the vehicle.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

3

x2r

y2r r2r

x2l

y2l

r2l

x2r

x2l

x1y1

r1
−φl

φr

rαr

rαl

Fig. 1 A vehicle with boundary curves to the left and to the
right of the vehicle.

We first introduce the shape dynamics that govern

the relationship between the vehicle and the closest

points. We then derive the tracking control law, and

prove its convergence.

3.1 Shape Dynamics

In Fig. 1, r1 denotes the position of the vehicle, and x1

denotes the heading direction of the vehicle. r2r is the

closest point to the right of the vehicle, and x2r denotes

the unit tangent vector to the boundary curve at r2r.
φr is the angle measured counter-clockwise from x1 to

x2r, the tangent vector at r2r. The relative position

between the vehicle and the closest point to the right of

the vehicle is rαr = r2r−r1, and we define rαr = ‖rαr‖.
The quantities r2l, x2l, φl, rαl, and rαl are defined

to the left of the vehicle in the same fashion as those to

the right of the vehicle.

We choose the positive directions of the boundary

curves such that

x1 · x2l = cos(φl) > 0

x1 · x2r = cos(φr) > 0, (4)

which means that −π/2 < φl < π/2 and −π/2 < φr <

π/2.
Considering the boundary curve to the right of the

vehicle, the shape dynamics are given by [36] as follows.

ṙαr = − sin(φr) (5)

φ̇r = (
κr

1− κrrαr
) cos(φr)− u, (6)

where κr denotes the curvature of the boundary at the

closest point to the right of the vehicle. Similarly, for
the boundary curve to the left, we have

ṙαl = sin(φl) (7)

φ̇l = (
κl

1 + κlrαl
) cos(φl)− u, (8)

where κl denotes the curvature of the boundary at the

closest point to the left of the vehicle.

3.2 Tracking Control and Convergence Analysis

In this section, we design the tracking control law based

on a Lyapunov function. Consider the Lyapunov func-

tion candidate

V = −ln(cos(
φl + φr

2
)) + λ(rαl − rαr)

2, (9)

where λ > 0 is a constant that balances the control

for alignment and the control for vehicle position. In

(9), the term −ln(cos(φl+φr

2)) penalizes misalignment
between the heading direction of the vehicle and the

tangent vector to the Voronoi edge. The term rαl − rαr
in (9) makes the vehicle converge to a Voronoi edge.

The time derivative of V is

V̇ = tan(
φl + φr

2
)[
1

2
(
κl cosφl

1 + κlrαl
+

κr cosφr

1− κrrαr
− 2u)

+4λ(rαl − rαr) cos(
φl + φr

2
) cos(

φl − φr

2
)], (10)

where we have used the shape dynamics (5),(6),(7), and

(8). Also, sin(φl) + sin(φr) = 2 sin(φl+φr

2) cos(φl−φr

2) is

applied.

We design steering control u so that V̇ ≤ 0. One

choice of u that leads to V̇ ≤ 0 is

u =
1

2
(
κl cosφl

1 + κlrαl
+

κr cosφr

1− κrrαr
) + µ sin(

φl + φr

2
)

+2λ(rαl − rαr)(cosφl + cosφr), (11)

where µ > 0 is a constant gain for the tracking con-

troller. According to [36], we see that the steering con-
trol u corresponds to the curvature of the vehicle’s tra-

jectory at the moment when u is applied. Hence, as long

as the control law (11) is not singular (denominator of

(11) is not zero), curvature is well defined along the
trajectory of the vehicle. Hence, we can guarantee that

the trajectory of the vehicle is smooth.

The time derivative of V in (10) with u given by
(11) is

V̇ = −µ
sin2(φl+φr

2)

cos(φl+φr

2)
. (12)

By letting φ = φl+φr

2 , we get V̇ = −µ sin2(φ)
cos(φ) . In addi-

tion, −π/2 < φ < π/2 is derived using (4). Within this

range, we obtain −∞ < V̇ ≤ 0 which is unbounded.

V̇ = 0 if and only if φ = 0, since −π/2 < φ < π/2. As

|φ| increases from 0 to π/2, V̇ monotonically decreases
to −∞. This is to penalize misalignment between the

heading direction of the vehicle and the tangent vector

to the Voronoi edge.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

4

Theorem 1 Suppose that 1 + κlrαl 6= 0 and that 1 −
κrrαr 6= 0. Then, using the steering control law in (11),

the unit speed vehicle, whose initial position satisfies

(4), converges to the state where it moves along a smooth

Voronoi edge.

Proof For each trajectory that initially satisfies (4),
there exists a compact sublevel set Ω of V such that

the trajectory remains in Ω for all future time. Then, by

LaSalle’s Invariance Principle [17], the trajectory con-

verges to the largest invariant set I within the set E
that contains all points in Ω where V̇ = 0. The set

E in this case is the set of all points in Ω such that

φl +φr = 0. Thus, at any point in E, the dynamics are

expressed as

E = {(rαl, rαr, φl, φr)|φl + φr = 0}. (13)

Since the trajectory converges to the largest invari-

ant set I within the set E, we obtain φ̇l + φ̇r = 0 in I.

Therefore, using (6) and (8), we derive

(
κr

1− κrrαr
) cos(φr)+(

κl

1 + κlrαl
) cos(φl)−2u = 0. (14)

Applying (11), we get

2λ(rαl − rαr)(cos(φl) + cos(φr)) + µ sin(
φl + φr

2
) = 0.

(15)

In order to satisfy (15), rαl − rαr = 0 is required, since
φl + φr = 0 inside the set E. Therefore, the largest

invariant set I is expressed as

I = {(rαl, rαr, φl, φr)|rαl = rαr, φl + φr = 0}. (16)

Thus, we can conclude that (rαl, rαr , φl, φr) converges

to the equilibrium where rαl = rαr and φl = −φr. If
the vehicle is equidistant from two closest points on the

obstacle boundaries and the heading direction of the

vehicle is aligned to the tangent vector to the Voronoi

edge, then the vehicle moves along the Voronoi edge.
This implies that, as the vehicle converges to the state

I in (16), it converges to move along the Voronoi edge.

⊓⊔

By means of the LaSalle’s Invariance Principle, we

can conclude asymptotic convergence. This may cause a

problem for a vehicle to track a Voronoi edge with finite
length. This problem can be alleviated by noticing that

the convergence rate of the control law depends on the

controller gain µ (see (12)). Larger gain µ and weight

λ will enable the vehicle converges to a Voronoi edge
faster, which has been confirmed by rigorously compute

the eigenvalues of the Jacobian matrix for linearized

closed loop dynamics near the tracking equilibrium. If

a lower bound of the length of Voronoi edges within

the workspace is known, then µ can be selected so that

the vehicle gets sufficiently close to Voronoi edges in

finite time. Such a lower bound can be estimated based

on the length of the Voronoi edges already detected by
the vehicle, which will result in an adaptive gain µ. The

details of the gain adjustment algorithm is not the main

focus of this paper.

4 The Boundary Expansion (BE) Algorithms

In this section, we propose the boundary expansion

(BE) algorithms that enable the vehicle to construct

the Voronoi diagram of W by traversing all Voronoi

edges Eij for i, j = 1, 2, ...,M .

4.1 Definitions and Assumptions

We define an intersection P as a point at which the

following conditions are satisfied:

– there exists a circle centered at P intersecting ob-

stacle boundaries at more than two points. These

points on obstacle boundaries are called the clos-
est points at the intersection. If the vehicle is at an

intersection, then the closest points correspond to

the points that have local minimal distances to the

vehicle.
– the interior of the circle does not intersect any ob-

stacles. The circle is called an intersection circle (see

Fig. 2).

The lines connecting the intersection and the closest

points on the obstacle boundaries partition the inter-

section circle into sectors. We can see that each sector
is the “pie-shaped area” within the intersection circle

(see Fig. 2).

sector 3 sector 2

sector 0

∂Oj

P
sector 1

∂Oi

blocked sector

Fig. 2 The position of the vehicle is at the intersection P . The
circle is the intersection circle. The closest points partition the
circle into sectors. The sector i is the sector adjacent to the sector
i− 1 in the counter-clockwise direction.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

5

Suppose that the vehicle under control moves along

Eij until it visits an intersection P , as illustrated on Fig.

2. It will detect two closest points on ∂Oi and ∂Oj , since

P ∈ Eij . The sector that has these two closest points as

its end points is defined as sector 0 for the intersection
P . Intuitively, sector 0 is the sector through which the

vehicle moves to reach the intersection P . It serves as a

starting point for indexing the rest of the sectors. Sup-

pose that there are n sectors in the intersection circle,
as seen on Fig. 2. Looking into the page, we then in-

dex the sectors in the counter-clockwise direction from

sector 0. The index k satisfies 0 ≤ k ≤ n− 1.

When two end points of a particular sector are on

the same obstacle, the sector is called a blocked sector,

which is illustrated as “sector 2” in Fig. 2. An open

sector, illustrated as “sector 1” and “sector 3” in Fig.
2, denotes a sector that is neither a blocked sector nor

a sector 0. If the intersection detected by the vehicle

has an open sector that has not been visited by the

vehicle, then the intersection is marked as unexplored.
Otherwise, the intersection is marked as explored.

The following assumptions are made about the workspace

and the vehicle’s sensing and localization capability.

(A1) ∂V (Oi) is a simple closed curve for each Oi ∈ SO.
In other words, ∂V (Oi) is continuous and no self-

intersection occurs.

(A2) there are finitely many intersections inW . All blocked

sectors for these intersections are detectable by the

vehicle2.
(A3)

⋃
Oi∈SO

V (Oi) = W.

(A4) the initial position of the vehicle is such that an

obstacle other than OM is detected to the right of

the vehicle3. The vehicle can distinguish OM from
other obstacles4.

We call a closed loop that contains intersections con-
nected by Voronoi edges an enclosing boundary if there

is no unexplored intersection strictly inside such a loop

and the loop has no self-intersection. At any moment in

the BE algorithms, the enclosing boundary is unique.

4.2 Data Structures

The data structures used in the BE algorithms are sum-

marized in Table 1. For each intersection detected by

2 The experiments in Section 7 verify that the robot can detect
a blocked sector using IR sensors.

3 Assumption (A4) is strictly speaking not a restriction, since
the vehicle can initialize the heading orientation so that an ob-
stacle other than OM is detected to the right of the vehicle.

4 We can consider specific sensors deployed along OM so that
the vehicle can distinguish OM from other obstacles. Or, OM

may have a different shape (or color) from other obstacles.

Table 1 Table of Data Structures and Operations

Lu : singly linked list representing the enclosing boundary under
construction.
Lu.Insert(P) : insert an intersection P at the end of the linked
list Lu.
L : circularly linked list representing the current enclosing bound-
ary.
HT=L.seg(head,tail) : segment of L that starts from the head
and ends at the tail.
Lr= L.Remove(HT) : remove the segment HT from L resulting
in Lr .
CS : singly linked list representing the candidate segment.
L=Lr.Combine(CS) : combine the linked list Lr with CS result-
ing in updated L.
G : graph structure, representing the Voronoi diagram under con-
struction, which contains a list of intersections and an adjacency
matrix.
G.Update(P) : update entries of the adjacency matrix associated
to an intersection P .

G.Expand(P) : expand the adjacency matrix to include an inter-
section P , and update entries of the matrix associated to P .
HT .Search(unexplored) : search for unexplored intersections in
the linked list HT . If there is no unexplored intersection, return
NULL.
Dk : disabled intersection set of Bk (the enclosing boundary up-
dated after k steps).
Dk.Store(P) : store an intersection P in Dk.

the vehicle, we store the coordinates of the intersec-

tion. The enclosing boundary can then be represented
by a circularly linked list L constructed by linking the

intersections.

We use a graph structure G to represent the Voronoi
diagram under construction. G contains a list of dis-

tinct intersections together with an adjacency matrix

whose entries indicate whether a particular edge is in

the graph. When the vehicle detects an intersection P
that has not been stored in G, then the adjacency ma-

trix is expanded to include P .

4.3 Initialize the Enclosing Boundary

Algorithm 1 is to initialize the enclosing boundary. Sup-

pose that the obstacle to the right of the vehicle is Oi.
Under the tracking control law, the vehicle converges

to the state that it moves along ∂V (Oi) with ∂Oi to its

right. We denote the first intersection on ∂V (Oi) that

the vehicle encounters as P1,0. At each intersection that

the vehicle encounters, it searches for an open sector in
the counter-clockwise direction, from the reader’s view,

from sector 0. Once an open sector is detected, the ve-

hicle moves through the sector. Iterating this, the ve-

hicle moves along ∂V (Oi) with ∂Oi to its right and a
sequence of intersections encountered along its path is

constructed. The initial enclosing boundary B0 is de-

fined as the sequence of Voronoi edges connecting this

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

6

intersection sequence until the vehicle is at P1,0 for the

second time.

Algorithm 1 Construct the Initial Enclosing Bound-

ary
i← 1.
repeat

The vehicle encounters an intersection.
Pi,0 ← the intersection.
Search for an open sector in the counter-clockwise direction
from sector 0. The vehicle moves through the first open sec-
tor.
Pi,0.pointer ← first open sector.

if Pi,0 has an open sector that has not been visited by the
vehicle then

Pi,0.mark ← unexplored.
else

Pi,0.mark ← explored.
end if

Lu.Insert(Pi,0).

if Pi,0 ∈ G then

G.Update(Pi,0).
else

G.Expand(Pi,0).
end if

i← i+ 1.
until the vehicle encounters P1,0 for the second time.
L← Lu.

4.4 Update the Enclosing Boundary

Let Bk denote the enclosing boundary updated after k

steps. Algorithm 2 will expand B0 to obtain Bk for k =
1, 2, ... until Bk encloses all the obstacles except for OM .

We expand the enclosing boundary while maintaining

it as a simple closed curve tracked by the vehicle in the

clockwise direction.

The boundary expansion is guaranteed by two rules,

called the sector selection rules, that decide which sec-
tor the vehicle should move through at an intersection

and when to update the enclosing boundary.

Before stating the sector selection rules, we intro-

duce the (pointer) sector and the (pointer+ 1) sector.

When the vehicle on the enclosing boundary leaves for

the next intersection along the enclosing boundary in
the clockwise direction, it must move through another

sector that contains the path leading to the next inter-

section. We call this sector the (pointer) sector. The

(pointer + 1) sector denotes a sector whose index is

larger than the (pointer) sector by one. The (pointer)
sector and the (pointer + 1) sector stored at every in-

tersection on the enclosing boundary are illustrated on

Fig. 3.

The sector selection rules are stated for two cases :

enclosing boundary

(pointer)

(pointer + 1)
(pointer)

(pointer)

(pointer)

(pointer)
(pointer)

(pointer)

(pointer + 1)

(pointer + 1)

(pointer + 1)

(pointer + 1)(pointer + 1)

Fig. 3 The illustrative case to show the (pointer) sector and the
(pointer+ 1) sector stored at every intersection on the enclosing
boundary.

R1 When the vehicle visits an intersection on the en-

closing boundary, the vehicle searches for an open

sector in the counter-clockwise direction from the
(pointer + 1) sector to sector 0. Once an open sec-

tor is detected, the following condition is checked.

If the vehicle would move through the open sector,

then OM would not lie to the right of the vehicle.
If an open sector is detected that satisfies this con-

dition, the vehicle moves through the open sector.

Otherwise, the vehicle moves through the (pointer)

sector.

R2 When the vehicle visits an intersection not on the
enclosing boundary, the vehicle searches for an open

sector in the counter-clockwise direction from sector

0. Once an open sector is detected, the vehicle moves

through the open sector.

Suppose that the vehicle is on the Voronoi edge

Eij ⊂ ∂V (Oi), where i 6= j. At any intersection on

∂V (Oi), there exist two sectors that lead the vehicle

to follow ∂V (Oi) in the clockwise or in the counter-

clockwise direction. Therefore, the vehicle can always
find an open sector that satisfies the sector selection

rule R2.

Under the sector selection rules, the behavior of the
vehicle is as follows. The vehicle moves along the en-

closing boundary until it visits an intersection where

there is an open sector that leads outside the enclosing

boundary but will not force the vehicle to track OM

to its right. Then, the vehicle marks the intersection as
head and moves through the open sector. A singly linked

list CS is initiated with the head. Thereafter, the vehi-

cle keeps moving and chooses sectors using the rule R2,

inserting all intersections it encounters into CS. This
process ends when the vehicle encounters the enclosing

boundary again at an intersection. The vehicle marks

this intersection as tail and inserts tail into CS. We call

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

7

the trajectory of the vehicle from the head to the tail

the candidate segment. After the vehicle gets to the tail,

it uses the rule R1 to determine which sector to move

through.

We introduce the boundary updating rule. This rule
regulates when to replace a segment of the current en-

closing boundary with the candidate segment CS. The

rule is as follows :

R3 If there is no unexplored intersection, strictly be-
tween the head and the tail, along the segment of

enclosing boundary in the clockwise direction, then

we replace the segment of enclosing boundary from

the head to the tail by the candidate segment.

Suppose the current enclosing boundary is Bk. Fig-

ure 4 illustrates the case where the boundary updating

rule is satisfied. In this case, we update Bk by replac-

ing the segment of enclosing boundary that starts from

the head and ends at the tail by the candidate segment.
Figure 5 shows the update of L, the data structure of

the enclosing boundary, when the boundary updating

rule is satisfied.

obstacle

head

tail

Bk

candidate segment

Fig. 4 The illustrative case where we update the enclosing
boundary.

head tail

head tail

CS

L

explored

replace

Fig. 5 Update of the enclosing boundary when the boundary
updating rule is satisfied.

Figure 6 shows one case where the boundary up-

dating rule is not satisfied. The dotted curve indicates

the unexplored Voronoi edge. There are two unexplored

intersections along the segment of enclosing boundary

from the head to the tail. If the rule for updating Bk

is not satisfied, as illustrated in Fig. 6, then we keep

the enclosing boundary unchanged. To prevent the ve-
hicle from repeatedly traversing the candidate segment

that does not lead to boundary updates, the head of

such a candidate segment is recorded as a disabled in-

tersection in a set Dk that is associated with Bk. If the
vehicle encounters a disabled intersection, it will ignore

this intersection and move along Bk to the next inter-

section.

obstacle

head
tail

Bk

candidate segment

unexplored intersections

Fig. 6 The illustrative case where the boundary updating rule
is not satisfied.

5 Convergence of the BE algorithms

In this section, we prove the convergence of the bound-

ary expansion algorithms, i.e., both Algorithm 1 and

Algorithm 2.

Lemma 1 Consider a vehicle and W satisfying assump-

tions (A1)-(A4). Suppose that the obstacle to the right
of the vehicle is Oi. Then, using Algorithm 1, the ve-

hicle moves along ∂V (Oi) with ∂Oi to its right and a

sequence of intersections encountered along its path is

constructed. Algorithm 1 terminates when the vehicle
returns to the first intersection in the sequence.

Proof : Suppose that the obstacle to the right of the ve-

hicle is Oi. Under the control law, the vehicle converges

to the state that it moves along ∂V (Oi) with ∂Oi to its

right. We denote the first intersection on ∂V (Oi) that

the vehicle encounters as P1,0, and label the intersec-
tions the vehicle will encounter if it follows ∂V (Oi) with

∂Oi to its right as (P1,0, P2,0, ..., Pn,0). We organize our

proofs in two steps:

1. Show that the vehicle moves to P2,0.

2. Show that the vehicle visits P2,0 → P3,0... → Pn,0 →
P1,0.

1. For convenience, we call the closest point on ∂Oi as

C∂Oi
. At P1,0, C∂Oi

is to the right of the vehicle. Sup-

pose that there are n sectors at P1,0. Sector 0 and sector

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

8

Algorithm 2 Boundary Expansion
N denotes the number of intersections on the circularly linked
list L. Label the intersections on L in the clockwise direction
as P1,0,P2,0,...,PN,0. i← 1 and k ← 0.
while there is an obstacle other than OM outside the enclosing
boundary do

The vehicle visits Pi,k on L.
if Pi,k /∈ Dk and there exists an open sector, satisfying
the sector selection rule R1, outside the enclosing bound-
ary then

m← 1. E1 ← Pi,k. MeetTail← 0.
while MeetTail 6= 1 do

The vehicle finds Em.
if m == 1 then

Move through the open sector selected using the rule
R1.

else

Search for an open sector satisfying the rule R2, and
move through the selected open sector.

end if

Em.pointer← selected sector.
if Em has an open sector that has not been visited by
the vehicle then

Em.mark ← unexplored.
else

Em.mark← explored.
end if

CS.Insert(Em).
if Em ∈ G then

G.Update(Em).
else

G.Expand(Em).
end if

if m 6= 1 and the vehicle intersects L then

n← 1.
while Em 6= Pn,k do

n← n+ 1.
end while

T ← n and MeetTail← 1.
else

m← m+ 1.
end if

end while

head← E1 and tail← PT,k.
HT=L.seg(head,tail).
if HT 6= NULL and HT .Search(unexplored)⊂ (head,
tail) then

Lr=L.Remove(HT).
L=Lr.Combine(CS).
N denotes the number of intersections on L.
P1,k+1 ← tail. Relabel the intersections on L in the
clockwise direction as P1,k+1,P2,k+1,...,PN,k+1.
i← 1 and k ← k + 1.

else

Dk.Store(head). i← T .
end if

else

i← i+ 1.
end if

if i > N then

i← i−N .
end if

end while

n− 1 have the common closest point at C∂Oi
. The ve-

hicle moves through the sector n−1 if it is not blocked.

If sector n− 1 is blocked, then the sector selection rule

R2 is applied so that the vehicle moves through the

next open sector having C∂Oi
to the right of the vehi-

cle. Therefore, the vehicle tracks ∂V (Oi) with ∂Oi to

its right and will encounter P2,0.

2. Consider the case where the vehicle visits Pk,0 start-
ing from Pk−1,0 for all 2 ≤ k ≤ n. Similar to step

1, using the sector selection rule R2, the vehicle moves

along ∂V (Oi) with ∂Oi to its right until it visits Pk+1,0.

By induction, if the vehicle uses the sector selection

rule R2 at P1,0, P2,0, ...Pn,0, then it visits the intersec-

tions following the sequence P1,0 → P2,0... → Pn,0 →
P1,0. Algorithm 1 ends when the vehicle returns to P1,0.
⊓⊔

To state Theorem 2, we need to introduce the fol-

lowing concepts : Let Q denote an obstacle, other than

OM , outside Bk such that Bk

⋂
V (Q) 6= ∅. If Q is such

thatBk

⋂
V (Q) is a connected edge segment ofBk, then

we call it an addable obstacle Qk. Other than this possi-
bility, there are two more possibilities that Q can have.

Let Qt denote an obstacle that Bk

⋂
V (Qt) is an inter-

section. Qd denotes an obstacle such that Bk

⋂
V (Qd)

is composed of disjoint edge segments or intersections
of Bk. V (Qt), V (Qd), and V (Qk) are illustrated in Fig.

7.

Bk

V (Qt)

Bk

V (Qd)

Bk

V (Qk)

head

tail

S

Fig. 7 Illustration of V (Qt), V (Qd), V (Qk), and S. Qk is
addable. However, Qd and Qt are not addable.

Theorem 2 Consider a vehicle and W satisfying as-

sumptions (A1)-(A4). The vehicle explores W using Al-

gorithm 2. As long as there exists an obstacle other than

OM outside Bk, the following assertions hold :

1. Bk is a simple closed curve traversed in the clock-

wise direction, and there is no unexplored intersec-

tion strictly inside Bk.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

9

2. There exists an addable obstacle Qk such that the ve-

hicle moves along a path CS ⊂ ∂V (Qk), but CS 6=
∂V (Qk)

⋂
Bk. The path intersects Bk at two inter-

sections that can be marked as head and tail. Fur-

ther, CS is the candidate segment satisfying the rule
for updating Bk.

3. Bk is updated so that the obstacle Qk is inside the

enclosing boundary.

Proof : Using Algorithm 1, the vehicle moves along

∂V (Oi) with ∂Oi to its right and a sequence of inter-
sections encountered along its path is constructed ac-

cording to Lemma 1. Therefore, B0 is in the clockwise

direction from the reader’s viewpoint, which is identical

to ∂V (Oi). Here, B0 = ∂V (Oi) is a simple closed curve
using assumption (A1). Furthermore, no intersection is

strictly inside B0.

We prove by induction. Suppose that Bk is a simple

closed curve in the clockwise direction and that there

exists an obstacle other than OM outside Bk. Suppose
that there is no unexplored intersection strictly inside

Bk. Now, we organize our proofs in four steps:

1. show that there exists an addable obstacle Qk as

long as there exists an obstacle other than OM out-
side Bk.

2. show that there exists no unexplored intersection

strictly between the starting intersection (head) and

the ending intersection (tail) of ∂V (Qk)
⋂
Bk.

3. show that the vehicle moves along the path CS ∈
∂V (Qk) and that the path intersectsBk at the start-

ing and the ending intersections of ∂V (Qk)
⋂
Bk.

4. show that, after new enclosing boundary Bk+1 is

generated,Qk is inside Bk+1. Bk+1 is a simple closed
curve traversed by the vehicle in the clockwise direc-

tion, and there is no unexplored intersection strictly

inside Bk+1.

1. First, we show that there exists Q as long as there is
an obstacle other than OM outside Bk. Suppose that all

obstacles Oi outside Bk are such that Bk

⋂
V (Oi) = ∅.

Then, since ∂V (OM) should enclose both Bk and Oi,

∂V (OM) has self-intersection.
Next, we prove the existence of Qk by contradic-

tion. Suppose all Q are either Qd or Qt. We first argue

that Qd must exist. If only Qt exists, then ∂V (OM) has

self-intersection, since ∂V (OM) should enclose both Bk

and Qt. For Qd, call the disjoint boundary segments as
Bk

⋂
V (Qd). Along Bk, there exist one or more edge

segments of Bk connecting these disjoint boundary seg-

ments. We select one segment S such that S and some

edges of ∂V (Qd) form a closed loop that does not en-
close Qd. S is illustrated on Fig. 7. This closed loop

can be constructed as a simple closed curve, since self-

intersection does not occur along either ∂V (Qd) and

S ⊂ Bk. If S intersects ∂V (Qd) at more than two

points, we can always select a shorter segment of S so

that a simple closed loop can be constructed. We call

this closed loop Qd
1. Inside the closed loop Qd

i , we iter-

atively find another loop for Qd
i+1 until no more Qd

i+1

exists. Voronoi edges in S that exist along the inner

most loop belong to neither V (Qd) nor V (Qt) for any

Qt, which implies that there exists an addable obstacle

Qk inside the inner most loop. Therefore, by contra-
diction, there exists an addable obstacle Qk as long as

there exists an obstacle other than OM outside Bk.

2. We prove by contradiction. Suppose that an unex-

plored intersection exists strictly between the starting

and the ending intersections of ∂V (Qk)
⋂
Bk. Then there

exists an unvisited Voronoi edge meeting the unexplored

intersection. Since we suppose that no unexplored in-

tersection is strictly inside Bk, this unvisited Voronoi

edge lies toward Qk, as illustrated on Fig. 8. Hence,
at this unexplored intersection, three edges of ∂V (Qk)

meet, resulting in self-intersection of ∂V (Qk). This is a

contradiction to assumption (A1).

edge ⊂ ∂V (Qk)

∂V (Qk)
⋂
Bk ⊂ ∂V (Qk)

Qk

unexplored

Fig. 8 Three edges of ∂V (Qk) meet at an unexplored intersec-

tion on ∂V (Qk)
⋂

Bk.

3. We suppose that the vehicle has tracked Bk in the

clockwise direction until it visits the starting intersec-

tion of ∂V (Qk)
⋂
Bk. Then, we mark the starting in-

tersection as head and mark the ending intersection of

∂V (Qk)
⋂
Bk as tail. Note that the direction of ∂V (Qk)⋂

Bk is from the head to the tail, since Bk is in the

clockwise direction.
When the vehicle visits the head, there exists an

open sector outside the enclosing boundary, as illus-

trated on Fig. 7. Then, according to the rule R1, the

vehicle moves through the open sector outside the en-

closing boundary with Qk to the vehicle’s right. There-
after, it chooses sectors using the rule R2 and moves

along Voronoi edges.

We label the intersections the vehicle encounters if it

follows ∂V (Qk) with Qk to its right as (E1 = head , E2,
..., En = tail). Similar to the proof of Lemma 1, the

vehicle starting from Em moves along ∂V (Qk) with Qk

to its right until it visits Em+1. The sequence of Voronoi

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

10

edges connecting the intersection sequence (E1 = head , E2,

..., En = tail) is defined as the candidate segment CS ⊂
∂V (Qk).

4. The boundary updating rule for Bk is satisfied. Thus,

we update Bk by substituting ∂V (Qk)
⋂
Bk for CS.

There is no unexplored intersection strictly inside Bk+1,

because there exists no unexplored intersection strictly

between the starting and the ending intersections of

∂V (Qk)
⋂
Bk.

We now prove that Bk+1 is a simple closed curve

in the clockwise direction. Since self-intersection of CS

can not occur as we substitute ∂V (Qk)
⋂
Bk for CS,

Bk+1 is a simple closed curve. In addition, the direction

of Bk+1 is in the clockwise direction, since the direction
of ∂V (Qk)

⋂
Bk is the same as that of CS.

Next, since CS
⋃
(∂V (Qk)

⋂
Bk) ⊂ ∂V (Qk) is a

simple closed curve, CS
⋃
(∂V (Qk)

⋂
Bk) = ∂V (Qk).

After we generate Bk+1, the area enclosed by CS
⋃

(∂V (Qk)
⋂
Bk) is inside Bk+1, i.e., Q

k is inside Bk+1.

We have proved all the statements in Theorem 2. ⊓⊔

Corollary 1 Under Algorithms 1 and 2, the enclos-

ing boundary converges in finite time to the state that

there is no obstacle other than OM outside the enclosing

boundary.

Proof : As long as there is an obstacle other than OM

outsideBk, we can generateBk+1 using Theorem 2. The

process ends when there is no obstacle other than OM

outside Bk. Since there are finite number of obstacles,

the process terminates in finite time.⊓⊔

Corollary 2 When Algorithm 2 terminates, a complete

Voronoi diagram is constructed for W .

Proof : When Algorithm 2 terminates, there is no un-
explored intersection outside the final enclosing bound-

ary, since there is only OM outside. And, according to

Theorem 2, there is no unexplored intersection strictly

inside the enclosing boundary either. Thus, all the in-

tersections in W are explored. This implies that all the
Voronoi edges in W are visited by the vehicle. Con-

sequently, the trajectory of the vehicle depicts all the

Voronoi edges in W and a complete Voronoi diagram is

constructed. ⊓⊔

6 Performance Analysis

In this section, we provide an analytical upper bound

for the total time spent to construct Voronoi diagrams

in a regularized workspace. Each obstacle, other than
OM , is now simplified as one site (called a generator in

[13]). Then the workspace is partitioned by a centroidal

Voronoi tessellation.

As the number of Voronoi cells in a bounded workspace

increases, each Voronoi cell approaches to hexagonal

shape [13,27]. Thus, we analyze the performance of the

BE algorithms in the workspace where each cell has a

hexagonal shape with identical size. Hexagonal Voronoi
cells can be built using identical circular obstacles, as

illustrated on Fig. 9.

B5

OM

Fig. 9 All Voronoi cells, except for V (OM), have hexagonal
shapes with identical size. Inside B5, there are 6 obstacles.

Theorem 3 Consider a single unit speed vehicle and

workspace W with assumptions (A1)-(A4) satisfied. Sup-

pose that there are M obstacles such that all obstacles,
except for OM , have hexagonal Voronoi cells with iden-

tical size. Using the BE algorithms, the exploration time

is bounded above by T (12M
2 − 1

2M) where T denotes

the time for a vehicle to traverse along the edges of one
hexagonal Voronoi cell.

Proof : Consider the time to build B0. Since there is
only one Voronoi cell inside B0, the time to construct

B0 is

TB0
= T. (17)

Next, consider the time to generate Bk+1 from Bk

where k ≥ 0. Suppose that Bk is generated and that

the vehicle is at the tail of the candidate segment (CS)
for generating Bk.

Using Theorem 2, at least one of the Voronoi cells,

which is outside Bk and intersects the perimeter of Bk,

is an addable obstacle Qk. This addable obstacle Qk

will be an obstacle that is inside Bk+1. The vehicle
moves along Bk to reach the starting intersection (head)

of ∂V (Qk)
⋂
Bk. The vehicle’s maximal traversal dis-

tance to meet the starting intersection of ∂V (Qk)
⋂
Bk

is bounded above by the length of Bk. Note that the
vehicle has unit speed and that the number of Voronoi

cells, which are inside Bk, is k+1. Therefore, the length

of Bk is bounded above by (k + 1)T . In addition, the

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

11

length of CS, which connects the starting and the end-

ing intersections of ∂V (Qk)
⋂
Bk, is bounded above by

T , since the vehicle has unit speed. Hence, we derive

TBk+1
≤ TBk

+ (k + 1)T + T, (18)

where TBk
denotes the time for a vehicle to construct

Bk. Using (18), we obtain

TBk
≤ T (12k

2 + 3
2k + 1), (19)

since TB0
= T (see (17)). There are k+1 and M−1 ob-

stacles inside Bk and ∂V (OM) respectively. Therefore,

our algorithms terminate when

k + 1 = M − 1. (20)

Hence, replacing k + 1 in (19) by M − 1, we obtain

the time upper bound for the construction of Voronoi

diagrams using the BE algorithms as

Tc ≤ T (
1

2
M2 −

1

2
M). (21)

Therefore, the expected construction time is O(M2). ⊓⊔

7 Simulation and Experimental Results

We introduce two strategies to improve the time ef-

ficiency of the BE algorithms. Both the improved BE

algorithms and the feedback control law (11) are imple-
mented in MATLAB simulations. To compare our algo-

rithms with [10], we perform MATLAB simulations of

the exploration algorithms and the control law in [10].

We then present the experimental results on a Khepera

III robot in an environment with three obstacles.

7.1 Simulation Results

Figure 10 depicts the MATLAB simulation results using
the exploration algorithms and the control law in [10],

and Fig. 11 depicts the results using the BE algorithms

and the control law. In both Fig. 10 and Fig. 11, the

initial position of the vehicle is (2, 20), and the obstacle
boundaries are shown in thick red curves. The trajec-

tory of the vehicle is plotted with blue points. Along the

vehicle’s trajectory, the intersections are marked with

large green dots.

In [10] and related works, the vehicle moves through

a sector to check whether the sector is open or blocked.

In other words, the vehicle moves through a blocked
sector until it detects a blocking obstacle boundary. Our

simulation results show that 63.4 time unit is spent to

finish the exploration in Fig. 10.

0 10 20 30 40 50
0

5

10

15

20

25

30

35

40

45

50

x

y

Fig. 10 The Voronoi diagram constructed by the vehicle using
the exploration algorithms and the control law in [10].

The BE algorithms are theoretically sound, but we
can improve the time efficiency of the algorithms with-

out violating the correctness of the algorithms. We have

implemented two strategies. The first strategy is in-

spired by the fact that the vehicle does not have to
traverse the entire enclosing boundary to find an unex-

plored intersection. Whenever the vehicle finishes build-

ing a candidate segment, it plans the shortest path to

reach the nearest unexplored intersection on the enclos-

ing boundary. Once the vehicle reaches the unexplored
intersection, it branches out of the loop to expand the

enclosing boundary.

The second strategy is to store the candidate seg-

ment with a disabled intersection, as discussed in Sec-
tion 4.4. If the boundary updating rule is not satis-

fied, we store the corresponding candidate segment as

a disabled candidate segment. Whenever the enclosing

boundary is updated, the vehicle checks the disabled
candidate segment to see whether there is still an unex-

plored intersection from the head to the tail. If no unex-

plored intersection is found, then the disabled candidate

segment will be enabled and boundary expansion can

be performed using this candidate segment. This strat-
egy updates the enclosing boundary without letting the

vehicle traverse the disabled candidate segment again.

Figure 11 depicts the trajectory of the vehicle using

the BE algorithms and the control law with improve-
ment over time efficiency. The total exploration time

is 36.3 time unit. The vehicle does not move through

a blocked sector, since we assume that the range sen-

sors of the vehicle can detect a blocked sector at an
intersection. If this assumption is removed, and we al-

low the vehicle to detect a blocked sector by retracing

behaviors (complete turning whenever the vehicle de-

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

12

tects a blocking obstacle boundary) as in [10], then the

BE algorithms take 61.8 time unit to finish5. Hence,

for the workspace illustrated in Fig. 10 and 11, the

time efficiency of the improved BE algorithms is com-

parable to the algorithms in [10]. Even though more
comparison may be necessary to formulate a definite

conclusion on comparing the BE algorithms with the

algorithms originated from [10], the difference in the

behavior of the robot is significant enough to justify
possible choices made in various contexts. The BE al-

gorithms have added an option to the library of explo-

ration algorithms.

0 10 20 30 40 50
0

5

10

15

20

25

30

35

40

45

50

x

y

Fig. 11 The trajectory of the vehicle is built using the BE algo-
rithms and the control law with improvement over time efficiency.

7.2 Experimental Results

The validity of our algorithms and the control law (11)

is verified using a miniature robot Khepera III [25] that

localizes itself based on an odometry system. The Khep-

era III robot has nine IR sensors and five sonar sensors.
In the experiments, we use only IR sensors for range

measurements.

As the robot maneuvers in the workspace, a MAT-

LAB plot is displayed in real time to show the detected

obstacle environment. Figure 12 shows the real time
plot with corresponding obstacle environment. The Khep-

era III robot is depicted as a dotted circle. In addition,

the trajectory of the robot is plotted as a blue curve.

On the trajectory of the robot, intersections are marked
with small circles.

5 We omit the MATLAB figure for this case, since it is almost
the same as Fig. 10.

Fig. 12 Three rectangular obstacles are set up in the workspace.
A Khepera III robot successfully constructs the Voronoi diagram
in this workspace. Real time MATLAB plot is displayed above
the snapshot of corresponding obstacle environment. In the MAT-

LAB plot, a rounded rectangle is drawn around an intersection
with a blocked sector.

The robot stores coordinates deduced from its odom-

etry and the IR readings for the points detected on the

obstacle boundary. These coordinates on the obstacle
boundary are referred to as obstacle points. To decrease

measurement noise in obtaining obstacle points, sensor

data are smoothed by convoluting with a Gaussian ker-

nel [22]. The obstacle points derived from IR sensors

are shown in red in the MATLAB plot of Fig. 12. De-
spite using Gaussian smoothing to reduce measurement

noise, obstacle points are still scattered.

To allow the robot to detect a blocked sector using
IR sensors (sensor range :∼ 0.11m), we set up a small

piece of cardboard at each corner of the workspace. In

the MATLAB plot of Fig. 12, green circles centered at

obstacle points are used to determine whether a sector

is open or blocked. When the robot meets an intersec-
tion, green circles appear on the obstacle points that are

inside a sector. Hence, by observing the distribution of

the green circles, the robot can detect a blocked sector

at the intersection. In the MATLAB plot of Fig. 12, an
intersection with a blocked sector is marked with a ma-

genta star inside a small circle, and a rounded rectan-

gle is drawn around an intersection with a blocked sec-

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

13

tor. This figure shows that there are intersections with

blocked sectors located at the corners of the workspace.

Each blocked sector has two end points located on the

boundary of the workspace.

When a closest point on either side of the robot is

selected by error from the scattered obstacle points, the

robot may unexpectedly move off the Voronoi edge and

head toward the obstacle boundary using (11). Once

the robot is too close to an obstacle on one side, it may
not detect an obstacle on the other side due to short

range limitations (∼ 0.11m) posted by IR sensors. In

this case, instead of using (11), the reactive control [5]

is applied for collision avoidance. When the reactive
control is applied, the robot’s position is marked with

“×” in the MATLAB plot (Fig. 12).

In the case where the robot has to move along the

enclosing boundary that has been constructed previ-
ously, the robot follows the enclosing boundary using a

method similar to those in [14, 18, 36]. First, we let a

virtual robot move along the enclosing boundary ahead

of the real robot. Then, the real robot keeps moving to-
ward the virtual robot to follow the enclosing boundary.

Using the virtual robot approach, the real robot builds

a smoother trajectory than the enclosing boundary ini-

tially built. In addition, the real robot can follow the

enclosing boundary with higher speed, since the robot
does not have to process sensor data while it moves

toward the virtual robot.

8 Conclusions

In this paper, we develop a provably convergent control

law that enables a vehicle to follow Voronoi edges using

range sensors. We then develop the boundary expan-
sion algorithms so that the Voronoi diagram structure

of an unknown compact area can be constructed in fi-

nite time. The algorithms implement decisions based

on information gathered at each intersection that the
vehicle encounters. We prove that such local decisions

result in a global behavior that leads to the construction

of a complete Voronoi diagram in finite time. Further-

more, we provide an analytic upper bound for the total

time spent to construct Voronoi diagrams in a regu-
larized workspace. Simulation and experimental results

are provided to demonstrate the effectiveness of both

the control law and the exploration algorithms.

Acknowledgements We greatly appreciate Sean Maxon for his
assistance in setting up the experiments and analyzing data.
We thank Justin Shapiro for preparing the Khepera III robots.
The research is supported by ONR grants N00014-08-1-1007 and
N00014-09-1-1074, and NSF grants ECCS-0845333(CAREER) and
CNS-0931576.

References

1. Ahn S, Doh NL, Chung W, Nam S (2008) The robust con-
struction of a generalized Voronoi graph (GVG) using partial
range data for guide robots. Industrial Robot: An International
Journal 35:259-265

2. Aurenhammer F (1991) Voronoi diagrams - a survey of a fun-
damental geometric data structure. ACM Computing Surveys
23:345-405

3. Bandyopadhyay S, Coyle EJ (2003) Minimizing communica-
tion costs in hierarchically clustered networks of wireless sen-
sors. Wireless Communications and Networking 2:1274-1279

4. Bhattacharya P, Gavrilova ML (2008) Roadmap-based path
planning - using the Voronoi diagram for a clearance-based
shortest path. IEEE Robotics and Automation Magazine 15:58-
66

5. Brooks RA (1999) Cambrian Intelligence: The Early History
of the New AI, MIT Press

6. Brown G (1965) Point density in stems per acre. Newzealand
Forestry Service Research Notes 38:1-11

7. Choset H, Burdick J (2000) Sensor-based exploration: the hier-
archical generalized Voronoi diagram. The International Jour-
nal of Robotics Research 19:96-125

8. Choset H, Konukseven I, Burdick J (1996) Mobile robot navi-
gation: issues in implementation the generalized Voronoi graph
in the plane. In Proc. of IEEE/SICE/RSJ International Con-
ference on Multisensor Fusion and Integration for Intelligent
Systems, Washington DC, USA, pp. 241-248

9. Choset H, Konukseven I, Rizzi A (1997) Sensor based plan-
ning: a control law for generating the generalized Voronoi
graph. In Proc. of 8th International Conference on Advanced
Robotics, CA, USA, pp. 333-338

10. Choset H, Nagatani K (2001) Topological simultaneous local-
ization and mapping (SLAM): toward exact localization with-
out explicit localization. IEEE Transactions on Robotics and
Automation 17:125-137

11. Choset H, Walker S, Eiamsa-Ard K, Burdick J (2000) In-
cremental construction of the hierarchical generalized Voronoi
graph. The International Journal of Robotics Research 19:126-
148

12. Cortés J, Mart́ınez S, Karatas T, Bullo F (2004) Coverage
control for mobile sensing networks. IEEE Transactions on
Robotics and Automation 20(2):243-255

13. Du Q, Faber V, Gunzburger M (1999) Centroidal Voronoi
tessellations: applications and algorithms. SIAM Review
41:637-676

14. Egerstedt M, Hu X, Stotsky A (2001) Control of mobile plat-
forms using a virtual vehicle approach. IEEE Transactions on
Automatic Control 46:1777-1782

15. Fortune SJ (1987) A sweepline algorithm for Voronoi dia-
grams. Algorithmica 2:153-174

16. Garrido S, Moreno L, Blanco D, Martin F (2007) Exploratory
navigation based on Voronoi transform and fast marching. In
IEEE International Symposium on Intelligent Signal Process-
ing, Xiamen, China, pp. 1-6

17. Khalil HK (2002) Nonlinear Systems (3rd ed), Prentice Hall

18. Kim J, Zhang F, Egerstedt M (2009) Curve tracking control
for autonomous vehicles with rigidly mounted range sensors.
Journal of Intelligent and Robotic Systems 56:177-198

19. Klein R (1988) Abstract Voronoi diagrams and their applica-
tions. Computational Geometry and its Applications 333:148-
157

20. Klein R (1990) Concrete and Abstract Voronoi diagrams,
Springer

21. Lavalle SM (2006) Planning Algorithms, Cambridge Univer-
sity Press

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

14

22. Lindeberg T (1990) Scale-space for discrete signals. IEEE
Transactions of Pattern Analysis and Machine Intelligence
12(3):234-254

23. Mart́ınez S, Cortés J, Bullo F (2007) Motion coordination
with distributed information. IEEE Control Systems Magazine
27(4):75-88

24. Mead R (1966) A relation between the individual plant-
spacing and yield. Ann. of Bot., N. S. 30:301-309

25. Mondada F, Franzi E, Ienne P (1993) Mobile robot miniatur-
isation: a tool for investigation in control algorithms. In Proc. of
the Third International Symposium on Experimental Robotics,
Kyoto, Japan, pp. 501-513

26. Nagatani K, Choset H (1999) Toward robust sensor based
exploration by constructing reduced generalized Voronoi graph.
In Proc. of IEEE/RSJ International Conference on Intelligent
Robots and Systems, Kyongju, Korea, pp. 1687-1692

27. Newman D (1982) The hexagon theorem. IEEE Transactions
on Information Theory 28:137-139

28. Okabe A, Boots B, Sugihara K (1992) Spatial Tessellations:
Concepts and Applications of Voronoi Diagrams, Wiley

29. Rao NSV, Stoltzfus N, Iyengar SS (1991) A retraction
method for learned navigation in unknown terrains for a cir-
cular robot. IEEE Transactions on Robotics and Automation
7:699-707

30. Reddy PV, Justh EW, Krishnaprasad PS (2006) Motion
camouflage in three dimensions. In Proc. of 45th IEEE Conf.
on Decision and Control, San Diego, CA, USA, pp. 3327-3332

31. Samson C (1995) Control of chained systems: Application to
path-following and time-varying point-stabilization of mobile
robots. IEEE Transactions on Automatic Control 40:64-77

32. Sudha N, Nandi S, Sridharan K (1999) A parallel algorithm
to construct Voronoi diagram and its VLSI architecture. In
Proc. of IEEE International Conference on Robotics and Au-
tomation, Detroit, MI, USA, pp. 1683-1688

33. Svec P (2007) Using methods of computational geometry in
robotics. PhD Thesis, Brno University of Technology, Brno,
Czech Republic

34. Wein R, Berg JP, Halperin D (2005) The visibility–Voronoi
complex and its applications. In Proc. of the Twenty-first An-
nual Symposium on Computational Geometry, Pisa, Italy, pp.
63-72

35. Zhang F, Fratantoni DM, Paley D, Lund J, Leonard NE
(2007) Control of coordinated patterns for ocean sampling. In-
ternational Journal of Control 80:1186-1199

36. Zhang F, Justh E, Krishnaprasad PS (2004) Boundary fol-
lowing using gyroscopic control. In Proc. of 43rd IEEE Conf.
on Decision and Control, Atlantis, Paradise Island, Bahamas,
pp. 5204-5209

37. Zhang F, Leonard NE (2007) Coordinated patterns of unit

speed particles on a closed curve. Systems and Control Letters
56:397-407

38. Zhang F, O’Connor A, Luebke D, Krishnaprasad PS (2004)
Experimental study of curvature-based control laws for obstacle
avoidance. In Proc. of IEEE International Conf. on Robotics
and Automation, New Orleans, LA, USA, pp. 3849-3854

Biography

June 5, 2010

Jonghoek Kim is currently a graduate research assistant and Ph.D. candi-

date at the School of Electrical and Computer Engineering in Georgia Institute

of Technology. His research focuses on developing motion control law and mo-

tion planning algorithms for robotic sensor networks and multi-agent system.

Jonghoek Kim received his M.S. in Electrical and Computer Engineering from

Georgia Tech in 2008 and his B.S. in Electrical and Computer Engineering from

Yonsei university, South Korea in 2006.

Fumin Zhang is an Assistant Professor in the School of ECE of Georgia

Institute of Technology since 2006. He worked as a lecturer and postdoctoral

research associate in the Mechanical and Aerospace Engineering Department of

Princeton University from 2004 to 2006. He obtained the Ph.D. degree from the

Department of Electrical and Computer Engineering, University of Maryland in

2004, College Park, where he also worked for the Institute for Systems Research.

His B.S. and M.S. degrees are from Tsinghua University in Beijing in 1995 and

1998 respectively. Dr. Zhang founded the research and teaching program in the

fields of robotics and control at Georgia Tech Savannah Campus. His major

research focus includes design and control of marine robots and mobile sensor

networks, battery modeling and control, and theoretical foundations for cyber-

physical systems. He received the CAREER award from NSF in 2009, and the

YIP award from ONR in 2010.

Magnus Egerstedt is an Associate Professor in the School of Electrical and

Computer Engineering at the Georgia Institute of Technology, where he has

been on the faculty since 2001. Egerstedt received the M.S. degree in Engi-

neering Physics and the Ph.D. degree in Applied Mathematics from the Royal

Institute of Technology in 1996 and 2000 respectively, and he spent 2000-2001 as

a Postdoctoral Fellow at Harvard University. Dr. Egerstedt’s research interests

include hybrid and optimal control, with emphasis on motion planning, control,

and coordination of mobile robots, and he has authored over 200 papers in these

areas. He serves as Editor for Electronic Publications for the IEEE Control Sys-

tems Society and as Associate Editor for the IEEE Transactions on Automatic

Control. Magnus Egerstedt is a Senior Member of the IEEE, he received the

ECE Junior Faculty Member Award in 2005, and the CAREER award from the

National Science Foundation in 2003.

1

*Author Biographies (250 Word Maximum)

*Author Photographs
Click here to download high resolution image

http://www.editorialmanager.com/auro/download.aspx?id=52840&guid=6fda329c-4cdc-4e78-80b1-efcb318ad72f&scheme=1

*Author Photographs
Click here to download high resolution image

http://www.editorialmanager.com/auro/download.aspx?id=52841&guid=7aeea7c3-b4d1-4057-838c-968347463e31&scheme=1

*Author Photographs
Click here to download high resolution image

http://www.editorialmanager.com/auro/download.aspx?id=52842&guid=d2a1bb2e-c9de-4b24-8370-f0e120883158&scheme=1

