
Biologically Motivated Shape Optimization of Foraging Fronts

Musad Haque, Amir Rahmani, Magnus Egerstedt, and Anthony Yezzi

Abstract— Social animals often form a predator front to
charge through an aggregation of prey. It is observed that the
nature of the feeding strategy dictates the geometric shape of
these charging fronts. Inspired by this observation, we model
foraging multi-robot fronts as a curve moving through a prey
density. We optimize the shape of the curve using variational
arguments and simulate the results to illustrate the operation
of the proposed curve optimization algorithm.

I. INTRODUCTION

Charging through an aggregation of prey is a common

foraging strategy among social animals. Using this technique,

predators form a specific formation to create a front that

moves together, in unison, towards the collection of prey. The

U-shaped African lion front known as the “catcher’s mitt”

and the “wall method” exhibited by Bottlenose dolphins are

examples of these geometric strategies [1], [2]. Our goal is

to formalize this, i.e., to draw inspiration from nature and

optimize the shape of the predator fronts for foraging multi-

agent systems.

Foraging has received significant attention in the multi-

robot community (for a representative sample, see [3], [4],

[5], [6], [7]); yet previous work primarily focuses on the

search and retrieval aspects of foraging stationary objects or

cooperative agents. In [3], the effects of physical interference

is presented for different foraging strategies and the effects

of behavioral diversity of the foraging group is studied

in [4], where the behaviors range from “homogeneous”

to “specialized.” Bio-inspired foraging strategies for static

environments, based on ants and bees, are presented in [5]

and [6], respectively. Here, we instead focus on the geometric

shape of the foraging front in a dynamic scenario involving

prey that are not explicitly cooperative.

We develop a curve flow algorithm that modifies the shape

of the predator front to maximize the total energy intake,

i.e. the total amount of prey swept by the front. A potential

application for this work is the clean up of oil spills. Until

now, unmanned vehicles have been deployed in the spill site

to collect data on ocean properties and survey the extent

of damage. However, we propose to utilize a multi-robot

system for an efficient clean up task of spilled oil. Fig. 1

shows how a group of robots coordinate to drive a flexible

suction boom towards a spill site. Using the proposed curve

flow algorithm, we can optimize the shape of this boom for

This work is partially supported by the Office of Naval Research through
the MURI, Heterogeneous Unmanned Networked Teams (HUNT).

M. Haque, A. Rahmani, M. Egerstedt, and A. Yezzi are
with the School of Electrical and Computer Engineering,
Georgia Institute of Technology, Atlanta, GA, 30332 USA
musad.haque@gatech.edu, {amir.rahmani,
magnus.egerstedt, ayezzi}@ece.gatech.edu

oil spill

flexible
absorbent
boom

unmanned
robot

Fig. 1. A group of unmanned vehicles are driving a flexible, absorbent
boom towards an oil spill. Optimizing the shape of the boom, to remove
the largest amount of oil, is a possible application of the proposed curve
flow algorithm.

an efficient cleanup of the oil spill as a function of the oil

dynamics.

The problem of finding the optimal charging front was

initially addressed in [8], but the effort was restricted to

the simulation of quadratic curves under various predator-

prey interactions. The curve flow algorithm developed in

this paper is based on curve evolution techniques, which are

widely used in the field of image processing, e.g. see [9],

[10], [11]. Active contours for image segmentation evolve

an initial curve under a cost function to detect objects. One

common approach is to model the initial curve as a level set

and define the optimality condition based on the speed of the

curve, e.g. [9], [10]. Here, we follow a similar strategy to that

of [11], where an arc length parameterized curve is evolved

according to a gradient ascent based deformation algorithm.

The remainder of the paper is organized as follows:

Section II introduces the curve-based model of the charging

front and presents the curve flow algorithm. Examples that

illustrate the operation of the algorithm are provided in

Section III. Conclusions are presented in Section IV.

II. CURVE EVOLUTION MODEL

In this section, we present our curve-based model of the

predator front, define the energy over a curve, and produce

an algorithm to increase the energy intake by deforming the

shape of the curve. We model the prey aggregation as a

2D time-varying density function denoted by u(x,y, t), where

u : R2 ×R → R describes prey density at position (x,y) at

time t. This density function changes according to partial

differential equations (PDEs) representing the movement of

the prey. In biology, this approach is known as the “popula-

tion framework” [13] and unlike the agent-based models of

the prey (e.g. [14]), this approach does not require tracking

the movement of individual prey-like agents.

y

x

t = tf

t

t = t0

C(0, t0, τ)
C(L, t0, τ)

C(s, t, τ)

Fig. 2. A curve front sweeps in the positive y direction with unit speed
while maintaining its shape.

C(s, t0, τ1)

C(s, t0, τ2)

Fig. 3. Curves evolving under the proposed algorithm share the same
endpoints at t = t0 .

We use PDEs to denote prey movement for the purpose

of simulations only. In general, the curve flow algorithm

developed in this paper is independent of the choice of prey

movement representation, and is only a function of prey

density at each time.

A. Predator Fronts as Curves

We model the predator front as a curve of fixed shape

sweeping through the aggregation of the prey, as shown in

Fig. 2. Without loss of generality, we assume that the front

sweeps the area with unit speed and in the positive y direction

while maintaining its shape. We define the energy intake of

the front as the sum of the prey it sweeps over time and

our goal is to find the best front shape that maximizes this

energy intake.

Let the predator front be given by the curve, C(s, t,τ),
where s is the arclength parameter, t denotes time, and τ ∈R

parameterizes a family of time-varying curves. If we denote

the total length of the curve by L(τ), then s ∈ [0,L(τ)]. We

will find the optimum shape of the front by evolving the

curve C, using gradient ascent and moving in a direction that

increases the energy intake. The main idea of the algorithm is

to start with a curve shape C(s, t,0) and let it sweep the prey

density from t = 0 to t = t f and compute the energy intake.

Then, we deform the shape of the curve (with respect to

τ) such that the energy intake is increased during the next

sweep. We repeat these steps until the best curve shape is

found.

It should be noted that with this curve-based model of the

predator front, we are assuming a continuum of predators

instead of the common agent-based model of foragers seen

in [3]. Moreover, we assume that all curve shapes have

identical endpoints, i.e. the endpoints of the curve stay the

same regardless of the deformation in the shape of the curve

(Fig. 3).

We represent the energy-intake during a sweep of the

curve, i.e. the amount of prey being “eaten” during a charge,

as

E(τ) =

∫ t f

0

∫ L(τ)

0
u(C(s, t,τ), t) ds dt, (1)

where u(C(s, t,τ)) represents the prey density at position

C(s, t,τ) at time t. Our goal is to find the curve shape that

maximizes this energy and we choose to use gradient ascent

to update the curve shape, i.e. in such a way that the gradient

of E(τ) with respect to τ is increased. The derivative of E(τ)
with respect to τ is given by

dE(τ)

dτ
=

∫ t f

0

d

dτ

∫ L(τ)

0
u(C(s, t,τ), t) ds dt, (2)

and to compute this derivative, we introduce a parameter

p ∈ [0,1] to replace the s parameterization of the curve

with a parameterization that is not τ dependent. (For this

substitution, we follow the method outlined in [11].) From

the definition of arc length1,

L(τ) =
∫ L(τ)

0
ds =

∫ 1

0
‖Cp(p,τ)‖ d p, (3)

from which it follows that

ds = ‖Cp(p,τ)‖ d p, (4)

and

dE(τ)

dτ
=

∫ t f

0

∫ 1

0

(

u(C(s, t,τ), t)‖Cp(p,τ)‖
)

τ
d p dt. (5)

Using the chain rule, we get

dE(τ)

dτ
=

∫ t f

0

∫ 1

0
(uτ‖Cp‖+ u‖Cp‖τ) d p dt. (6)

Notice that,

uτ = ▽u ·Cτ , (7)

where ▽u(C(p, t,τ), t) is the 2D spatial gradient of u. Also,

we have that

‖Cp‖
2
τ = 2‖Cp‖‖Cp‖τ , (8)

and

(CT
p Cp)τ = 2CT

pτCp, (9)

where the superscript T denotes transpose. As a result,

‖Cp‖τ =CT
pτ

Cp

‖Cp‖
=Cτ p ·

−→
T , (10)

where we note that the partial derivatives of C can be

exchanged and we have introduced the unit tangent of the

curve,
−→
T (p,τ) =

Cp

‖Cp‖
. (11)

1For conciseness, we let fx represent the partial derivative
∂ f
∂ x

of a function

f (x,y) and denote the second-order partial derivative
∂ f

∂ x∂ y
by fxy.

Next, we substitute (7) and (10) into (6) and revert back to

the s parameterization to obtain

dE(τ)

dτ
=

∫ t f

0

∫ L(τ)

0

(

▽u ·Cτ + uCτs ·
−→
T (s,τ)

)

ds dt. (12)

Using integration by parts,

∫ L(τ)

0
uCτs ·

−→
T ds =

[

uCτ ·
−→
T
]s=L(τ)

s=0
−

∫ L(τ)

0
Cτ ·

(

u
−→
T
)

s
ds (13)

Since we assume that the endpoints of the curve are fixed for

all values of τ , Cτ(0, t,τ) = 0 and Cτ(L(τ), t,τ) = 0,∀τ, t ∈
[0, t f]. Equation (12) can now be written as

dE(τ)

dτ
=

∫ t f

0

∫ L(τ)

0

(

▽u ·Cτ − Cτ ·
(

u
−→
T
)

s

)

ds dt. (14)

Using the chain rule,
(

u
−→
T
)

s
= us

−→
T + u

−→
T s

= ▽u ·Cs+ uκ
−→
N

= ▽u ·
−→
T + uκ

−→
N ,

where we introduce two more intrinsic geometric properties

of the curve: the unit normal
−→
N (s,τ) and curvature κ(s,τ),

through the relation
−→
T s = κ

−→
N . Thus, dE(τ)/dτ =

∫ t f

0

∫ L(τ)

0
Cτ ·

[

− uκ
−→
N +▽u−

(

▽u ·
−→
T
)−→

T

]

ds dt

=

∫ t f

0

∫ L(τ)

0
Cτ ·

[

− uκ
−→
N +

(

▽u ·
−→
N
)−→

N
]

ds dt

=

∫ t f

0

∫ L(τ)

0
Cτ ·

[

▽u ·
−→
N − uκ

]−→
N ds dt. (15)

Utilizing the fact that the only time-dependent functions are

u and ▽u, we have

dE(τ)

dτ
=

∫ L(τ)

0
Cτ ·

[−→
N T

∫ t f

0
▽u dt −κ

∫ t f

0
u dt

]−→
N ds. (16)

With this expression of dE(τ)/dτ , we will next present the

curve flow algorithm used to characterize the most efficient

predator front.

B. Curve Flow Algorithm

The main idea of the algorithm is to deform the shape

of the curve so that the energy consumed by the predator

front is increasing. To this end, our curve flow algorithm is

inherently a gradient ascent algorithm, and for the following

curve evolution:

Cτ :=
[−→

N T

∫ t f

0
▽u dt −κ

∫ t f

0
u dt

]−→
N , (17)

we have

dE(τ)

dτ
=

∫ L(τ)

0
‖Cτ(s,τ)‖

2 ds, (18)

i.e., dE(τ)/dτ is non-negative. Moreover, with such a choice

for curve evolution, we are not required to explicitly define

τ; instead, it is driving the curve evolution by our choice of

Cτ . However, note that the cost function given by (1) places

no restriction on the length of the curve. More specifically,

the κ

∫ t f

0
u dt

−→
N term, which represents a backward diffusion

term in (17), can potentially generate infinitely long curves

to increase the energy.

One way to address this would be to introduce a cost

function that penalized the length of the curve. Consider the

cost function, J, given by

J(τ) = E(τ)−ρL(τ), (19)

where E is the energy function given by (1) and ρ is some

positive constant. We take the derivative with respect to τ
and obtain,

dJ(τ)

dτ
=

dE(τ)

dτ
−ρ

dL(τ)

dτ
. (20)

From (16), we have an expression for dE(τ)/dτ and what

remains is to find an expression for dL(τ)/dτ . The total arc

length of the curve can be written as

L(τ) =

∫ 1

0
‖Cp‖ d p, (21)

and by taking the derivative with respect to τ , we have

dL(τ)

dτ
=

∫ 1

0
CT

pτ
−→
T d p (22)

Noting the fact that the end points do not change with respect

to τ and using integration by parts, we get

dL(τ)

dτ
=−

∫ L(τ)

0
CT

τ
−→
N κ ds. (23)

With (16) and (23), we can rewrite (20) as dJ(τ)/dτ =

∫ L(τ)

0
Cτ ·

[−→
N T

∫ t f

0
▽u dt −κ

(

∫ t f

0
u dt −ρ

)

]−→
N ds.

Thus, we propose the following evolution:

Cτ :=
[−→

N T

∫ t f

0
▽u dt −κ

(

∫ t f

0
u dt −ρ

)

]−→
N , (24)

with the result that dJ(τ)/dτ is non-negative. The update

rule for the curve becomes

C(s,0,τnext) =C(s,0,τ)+ (τnext − τ)Cτ(s,τ), (25)

except at the endpoints, where the curve shape does not

change.

III. EXAMPLES

For the curve flow algorithm developed in the previous

section, we are only required to specify the distribution

of prey at each time; it is independent of movement laws

used to describe the motion of the prey aggregation and the

predator-prey interaction model. In this section, we provide

two examples where we apply the curve flow algorithm: we

begin with the simple case of no predator-prey interactions,

and next present a case where more sophisticated prey are

scared of the dolphins. Simulation results are provided to

illustrate the operation of the algorithm.

A. Prey Model

In the case without any predator-prey interaction, the

aggregation of prey is modeled using a diffusion equation;

a reaction-diffusion equation is used in the case with more

sophisticated prey.

1) Diffusion: The movement of prey is described by the

following equation:

∂u(x,y, t)

∂ t
= v0

(

∂ 2u(x,y, t)

∂x2
+

∂ 2u(x,y, t)

∂y2

)

, (26)

where v0 ∈ R+ is the thermal diffusivity. The prey diffuses

from its initial density, u(x,y,0), at a “speed” of v0, regardless

of the location of the predator front. The diffusion of the prey

is shown as contours levels in Fig. 4.

This model can adequately describe diffusion of chemicals

such as oil on the surface of the water, an example of the

potential applications of the proposed algorithm presented

earlier.

2) Reaction-Diffusion: A reaction-diffusion process is a

more natural representation of the prey movement than a

simple diffusion process (as the one used in the previous

subsection) since it incorporates the prey response to a

predator charge. In general, a reaction-diffusion process

models the changes in a substance under: 1) reaction - the

influence of another substance and 2) diffusion - the spatial

distribution. There are numerous mathematical models of a

reaction–diffusion process and the one we use is known as

the FitzHugh-Nagumo model. Because of its simplicity, this

model is widely used in the field of mathematical biology to

describe the firing of neurons and the propagation of nerve

action potentials under the excitation of ion movement across

a membrane [16]. We tailor the system of partial differential

equations used to describe the FitzHugh-Nagumo model in

[16] to model the propagation of prey under the excitement

of the predator front as follows:

∂u(x,y, t)

∂ t
= v(q)

(

∂ 2u(x,y, t)

∂x2
+

∂ 2u(x,y, t)

∂y2

)

−σq, (27)

where σ ∈R+ and the diffusion coefficient, v, now depends

on the predator location, q. For a curve C(s, t,τ), we define

the predator location as follows:

q(x,y, t,τ) =

{

1 if (x,y) on C(s, t,τ)
0 otherwise

, (28)

where s ∈ {0, . . . ,L(τ)}. The diffusion coefficient is modeled

as

v(q) =

{

v0 +λ if q = 1

v0 otherwise
, (29)

where λ ∈R+. Such a formulation for the thermal diffusivity

captures the idea of the prey being “scared” in the presence

of predators. For a location (x,y), when q = 0 (i.e., there are

no predators present in that location), the prey-flock diffuses

according to the nominal speed of v0; but when q = 1, they

diffuse faster at a speed of v0 +λ . We also capture the idea

of prey being “removed” with the −σq term.

This model can be used to represent aggregation of smart

agents in a swarm or material that react to the movement of

the clearing front.

Our mathematical models for predator fronts and prey

aggregations are based on creating simple, yet rich biological

models. Recall that the goal of the work is not biomimicry,

but to draw inspiration from biology for engineering appli-

cations.

B. The Curve Flow Algorithm

The implementation of curve flow algorithm for a

diffusion-based prey density is presented in Algorithm (1).

By using (26), where the prey movement and predator posi-

tions are completely decoupled, the algorithm only requires

us to calculate the prey density terms, u(x,y, t) and ▽u(x,y, t),
once. These values are stored and subsequently accessed each

time the curve position is updated during a sweep. Also,

notice that in Routine (2), the unit normal and the curvature

is calculated only for the interior points on the curve. As a

result, the two endpoints of the cure do not vary with τ , a

requirement that was analytically useful in the derivation of

dE(τ)/dτ .

The algorithm for the reaction-diffusion case is similar to

Algorithm (1), with the difference that density terms should

be calculated inside Routine (3) at each time.

Algorithm 1 Curve flow algorithm

Specify initial prey distribution u(x,y,0)
Calculate ▽u(x,y,0)
for t = 0 : dt : t f do

Calculate u(x,y, t + dt)
Calculate ▽u(x,y, t + dt)

end for

τ ⇐ 0

Generate N points to specify initial curve C(0,0,0)
L(0)⇐ length of C(0,0,0)
Call Routine (2)

while ‖Cτ(s,τ)‖ > ε do

τ ⇐ τ + 1

L(τ)⇐ length of C(0,0,τ)
Call Routine (2)

end while

Routine 2 Calculate Cτ

for s = L(τ)
N

to
(N−1)

N
L(τ) do

Calculate
−→
N (s,τ)

Calculate κ(s,τ)
Call Routine (3)

Calculate Cτ(s,τ) according to (24)

C(s,0,τ + 1)⇐C(s,0,τ)+ γCτ(s,τ)
return C(s,0,τ + 1)
return Cτ(s,0,τ)

end for

x

y

−10 −8 −6 −4 −2 0 2 4 6 8 10

−10

−5

0

5

10

(a) t = 0

0.2 0.4

x

y

−10 −8 −6 −4 −2 0 2 4 6 8 10

−10

−5

0

5

10

(b) t = 0.25t f

0.04

0
.0

4 0.08

0.12

0.16

x

y

−10 −8 −6 −4 −2 0 2 4 6 8 10

−10

−5

0

5

10

(c) t = 0.5t f

0
.0

2

0
.0

2

0.04

0
.0

4 0.06

x
y

−10 −8 −6 −4 −2 0 2 4 6 8 10

−10

−5

0

5

10

(d) t = t f

Fig. 4. The curve at τ = 0, a line, is swept through a prey density. The density, centered at (0,0) and diffusing according to (26), is represented with a
contour map.

Routine 3 Calculate
∫ t f

0 u(C) and
∫ t f

0 ▽u(C)

int u(C)⇐ 0

int ▽u(C)⇐ 0

for t = 0 : dt : t f do

Calculate u(C(s, t + dt,τ))
Calculate ▽u(C(s, t + dt,τ))

end for

Calculate int u(C)
Calculate int ▽u(C)
return int u(C)
return int ▽u(C)

C. Simulations

The foraging area is represented by a 2D mesh, where

xmin = −10, xmax = 10, ymin = −10, ymax = 10, and the

mesh spacing is ∆x = ∆y = 0.5. The initial prey density is a

rectangle (1x13 units), where the center of the bottom edge

is located at (0,−5), as shown in Fig. 5(a). The diffusion

process is numerically solved with thermal diffusivity set to

0.5.

For each τ , the resulting curve is swept through the prey

density from ti = 0 to t f = 10, with a time step of ∆t = 0.05.

We use 21 data points to characterize the curve and the initial

curve (at τ = 0) is a straight line (shown as a dotted line in

Figs. 5 and 6).

Fig. 5 depicts the two evolutions of the curve: one under

the pure diffusion of prey and the other is for the reaction-

diffusion case. The curves illustrated at Figs. 5(b) and 5(c)

respectively represent the optimal predator front for the

diffusion and the reaction-diffusion case.

Although the shape of the optimal curve depends on the

nature of its interaction with prey, for the prey model used in

this paper, the overall tendency of the curve is to add more

length to the locations where prey is highly concentrated at

the beginning of the sweep. As seen in Fig. 5, the curve that

maximizes energy intake for the reactively diffusing prey

adds more length to these locations than the curve under the

purely diffusive case. More specifically, since prey diffuse

faster once they sense the predator front, we notice that the

agents in the off-center positions tend to arrange themselves

behind one another to collect the prey that diffuse due to

the presence of the agent located in the center of the curve.

Further, the shape of the optimal curve for the reaction-

diffusion case depends on the thermal diffusivity of prey -

a longer curve is generated when prey diffuse faster in the

presence of predators (Fig. 6).

IV. CONCLUSION

In this bio-inspired work, we characterize the most effi-

cient shape of the predator front to maximize the amount of

prey swept. Prey aggregation is modeled using the population

framework and the predator front is modeled as a 2D curve.

Using curve evolution techniques, an algorithm is proposed

to deform the predator front to maximize the total energy

−10 −8 −6 −4 −2 0 2 4 6 8 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

(a) Initial distribution of prey.

−10 −8 −6 −4 −2 0 2 4 6 8 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

(b) Diffusion case.

−10 −8 −6 −4 −2 0 2 4 6 8 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

(c) Reaction-diffusion case.

Fig. 5. Evolution of the predator front under the curve flow algorithm given by (24) for two types of prey movement processes. (a) The prey density is
represented by contour levels. (b)-(c) The dotted line depicts the initial estimate of the shape of the curve, and the solid line represents the optimal shape
of the curve.

−10 −8 −6 −4 −2 0 2 4 6 8 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

(a) Initial distribution of prey.

−10 −8 −6 −4 −2 0 2 4 6 8 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

(b) λ = 5v0

−10 −8 −6 −4 −2 0 2 4 6 8 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

(c) λ = 10v0

Fig. 6. The optimal curve is shown for two different values of λ . Note that a larger value of λ represents the case where prey diffuses faster in the
presence of predators. More specifically, a larger λ increases the thermal diffusivity of prey in (29).

intake of the predators. This algorithm is independent of the

method for which the prey density is calculated. Diffusion

and reaction-diffusion prey aggregation models are presented

as examples for which simulations show the application of

the proposed algorithm. Potential applications of this work

include design of the suction boom for surface oil skimming

and design of the net front in capturing smart marine mines.

REFERENCES

[1] K. Pryor and K. Norris, Dolphin Societies, Berkeley, CA: University
of California Press, 1998.

[2] R.D. Estes, Behavior Guide to African Mammals, Berkeley, CA:
University of California Press, 1991.

[3] D.A. Shell and M.J. Matarić, “On foraging strategies for large-scale
multi-robot systems”, Intl. Conf. on Intelligent Robots and Systems,
2006, pp. 2717–2723.

[4] T. Balch, “The impact of diversity on performance in multi-robot
foraging”, Proc. Third Conf. on Autonomous Agents, 1999, pp. 92–
99.

[5] T.H. Labella, M. Dorigo, and J. Deneubourg, Self-organised task
allocation in a group of robots, Distributed Autonomous Robotic

Systems, 2004.

[6] N. Lemmens, S. Jong, K. Tuyls, and A. Nowé, “Bee Behaviour in
Multi-agent Systems”, Adaptive Agents and Multi-Agent Systems III.
Adaptation and Multi-Agent Learning, 2008, pp. 145–156.

[7] G. Ferrari-Trecate, M. Egerstedt, A. Buffa and M. Ji, Laplacian Sheep:
A Hybrid, Stop-Go Policy for Leader-Based Containment Control,
Hybrid Systems: Computation and Control, Springer-Verlag, 2006, pp.
212–226.

[8] M. Haque, A. Rahmani, and M. Egerstedt, “Geometric Foraging
Strategies in Multi-Agent Systems Based on Biological Models,”
Conference on Decision and Control, Atlanta, USA, Dec 2010.

[9] Y. Shi and W. Karl, A fast level set method without solving PDEs, Int.
Conf. on Acoustics, Speech, and Signal Processing, 2005, pp. 97–100.

[10] T. Chan and L. Vese, “Active contours without edges,” IEEE Trans-

actions on Image Processing, vol. 10, no. 2, 2001, pp. 266–277.
[11] S. Lankton, D. Nain, A. Yezzi, and A. Tannenbaum, “Hybrid Geodesic

Region-Based Curve Evolutions for Image Segmentation”, SPIE Med-

ical Imaging, 2007.
[12] C. Packer and A.E. Pusey, Divided We Fall: Cooperation among Lions,

Scientific American Magazine, May 1997.
[13] S.-H. Lee, H.K. Pak, and T.-S. Chon, Dynamics of prey-flock escaping

behavior in response to predator’s attack, Journal of Theoretical
Biology, vol. 240, 2006, pp 250–259.

[14] M.A. Haque, A.R. Rahmani, and M. Egerstedt, “A Hybrid, Multi-
Agent Model of Foraging Bottlenose Dolphins”, Third IFAC Conf. on

Analysis and Design of Hybrid Systems, Zaragoza, Spain, 2009.
[15] J.E. Rhodes and G.S. Holder, Concept for Future Naval Mine Coun-

termeasures in Littoral Power Projection, 1998.
[16] J.D. Murray, Mathematical Biology I: An Introduction, New York, NY:

Springer, 2002.
[17] R. Heinsohn and C. Packer, Complex Cooperative Strategies in Group-

Territorial African Lions, Science, vol. 269, September 1995, pp.
1260–1262.

[18] J.G.F. Francis, The QR Transformation I, Comput. J., vol. 4, 1961, pp
265-271.

[19] H. Kwakernaak and R. Sivan, Modern Signals and Systems, Prentice
Hall, Englewood Cliffs, NJ; 1991.

[20] D. Boley and R. Maier, ”A Parallel QR Algorithm for the Non-
Symmetric Eigenvalue Algorithm”, in Third SIAM Conference on

Applied Linear Algebra, Madison, WI, 1988, pp. A20.

