Solutions to Homework Set 4: ECE6550
Magnus Egerstedt
Georgia Institute of Technology

1

a

\[\Gamma = \begin{bmatrix} B & AB \end{bmatrix}, \]

where

\[AB = \begin{bmatrix} \alpha \\ \beta + 1 \end{bmatrix}. \]

And hence

\[\Gamma = \begin{bmatrix} 1 & \alpha \\ 1 & \beta + 1 \end{bmatrix}, \]

which has \(\text{rank}(\Gamma) = 2 \) as long as \(\alpha \neq \beta + 1 \). Hence the system is completely controllable.

b

Let \(K = [k_1, k_2] \), which gives the closed-loop system

\[A - BK = \begin{bmatrix} \alpha & 0 \\ \beta & 1 \end{bmatrix} - \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} k_1 & k_2 \end{bmatrix} = \begin{bmatrix} \alpha - k_1 & -k_2 \\ \beta - k_1 & 1 - k_2 \end{bmatrix}. \]

The characteristic polynomial is

\[\chi_{A-BK}(\lambda) = \text{det}(\lambda I - (A - BK)) = \lambda^2 + \lambda(k_2 + k_1 - \alpha - 1) + (\beta - \alpha)k_2 + \alpha - k_1. \]

We want the poles in \(-1 \pm j \) and hence the desired characteristic polynomial is

\[\varphi(\lambda) = (\lambda + 1 + j)(\lambda + 1 - j) = \lambda^2 + 2\lambda + 2. \]

Identification of the coefficients gives

\[\begin{cases} k_1 + k_2 - 1 - \alpha = 2 \\ (\beta - \alpha)k_2 + \alpha - k_1 = 2 \end{cases} \Rightarrow \begin{cases} k_1 = 3 + \alpha + \frac{5}{\beta + 1 - \alpha} \\ k_2 = \frac{5}{\beta + 1 - \alpha}. \end{cases} \]

2

a

We have

\[\Omega = \begin{bmatrix} C \\ CA \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ \alpha & 0 \end{bmatrix}. \]

Hence \(\text{rank}(\Omega) = 1 \) and the system is not completely observable.
Let \(u = -Ly = -LCx \), where \(L \in \mathbb{R} \). We have
\[
A - BLC = \begin{bmatrix} \alpha - L & 0 \\ \beta - L & 1 \end{bmatrix},
\]
with characteristic polynomial
\[
\chi_{A - BLC}(\lambda) = \lambda^2 + \lambda (L - \alpha - 1) + \alpha - L.
\]
Identification of the coefficients gives
\[
\begin{aligned}
L - \alpha - 1 &= 2 \\
\alpha - L &= 2
\end{aligned}
\]
\[
\Rightarrow \begin{aligned}
L &= 3 + \alpha \\
L &= -2 + \alpha,
\end{aligned}
\]
which is impossible. Hence output feedback doesn’t work in this case.

3
This is a silly question. Since the system is completely controllable we already have a controllable decomposition, with
\[
A = \begin{bmatrix} \alpha & 0 \\ \beta & 1 \end{bmatrix}, \quad B = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \quad C = \begin{bmatrix} 1 & 0 \end{bmatrix}.
\]

4
We first need to establish a basis for \(\mathcal{N}(\Omega) \) and for \(\mathcal{N}(\Omega)^\perp \).
\[
\Omega x = \begin{bmatrix} x_1 \\ \alpha x_1 \end{bmatrix} = 0 \Rightarrow x_1 = 0.
\]
Hence
\[
\mathcal{N}(\Omega) = \text{span} \left(\begin{bmatrix} 0 \\ 1 \end{bmatrix} \right), \quad \mathcal{N}(\Omega)^\perp = \text{span} \left(\begin{bmatrix} 1 \\ 0 \end{bmatrix} \right).
\]
What this means is that the transformation matrix \(T \) is equal to the identity matrix and the system is already given by the observable decomposition. Hence the answer is the same as for Question 3.

5
a
We note that since \(\text{rank}(\Gamma) = 2 \) we have that
\[
\mathcal{R}(\Gamma) = \text{span} \left(\begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right).
\]
Hence
\[
\mathcal{R}(\Gamma) \cap \mathcal{N}(\Omega)^\perp = \text{span} \left(\begin{bmatrix} 1 \\ 0 \end{bmatrix} \right),
\]
\[
\mathcal{R}(\Gamma) \cap \mathcal{N}(\Omega) = \text{span} \left(\begin{bmatrix} 0 \\ 1 \end{bmatrix} \right),
\]
\[
\mathcal{R}(\Gamma)^\perp \cap \mathcal{N}(\Omega)^\perp = \{0\},
\]
\[
\mathcal{R}(\Gamma)^\perp \cap \mathcal{N}(\Omega) = \{0\}.
\]
What this means is again that \(T = I \) and again we already have the Kalman decomposition. Hence the answer is the same as for Questions 3 and 4.
b

The McMillan degree is given by the dimension of the intersection between the controllable and observable subspaces. And since

$$\dim(\mathcal{R}(\Gamma) \cap \mathcal{N}(\Omega)^\perp) = 1$$

we have that the McMillan degree is 1.